aner	Physics	

AAFAQ ACADEMY – KASUR

Class: F.Sc. Part – II

Chapter (19) DAWN OF MODERN PHYSICS

Name:

Total Marks: 12

_ Roll No: (in words) ___

EVENING GROUP OBJECTIVE TYPE

Paper Code:

Total Time: 10 Minutes

NOTE: Write your **Roll No.** in space provided. Using lead pencil will result in loss of marks. Q.No.1: You have four choices for each objective type question as A,B,C and D. The choice which you think is correct; fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that guestion.

Sr.	QUESTION	Α	В	С	D
No.					
1.	The relativistic energy 'E' is equivalent to	Ec^2	E	Ε	c^2
	relativistic mass given by		$\overline{c^2}$		$\frac{c}{E}$
2	The mass of an object will be doubled at anoth	$2.6.10^{7}$ m/s	$1.6 \times 10^8 \text{ m/s}$	$2.6 \times 10^8 \text{ m/s}$	L None of these
2.		2.0×10 111/S	1.0 × 10° 11/S	$2.0 \times 10^{\circ}$ m/s	None of these
э.	$0 \bullet 001 kg$ mass will be equivalent to	hour	hour	hour	None of these
4.	If the distance of an electric-lamp from a photo	$I \propto d^2$	$I \propto d$	$I \propto 1/$	$I \propto 1/$
	cell is continuously increased, the photo electric			$/d^{2}$	/ d
	current (I) varies with distance (d) as				
5.	Compton wavelength is given by	h	h	hc	$m_o h$
		$m_0 c^2$	$m_o c$	m	С
6.	If energy of incident photon is greater than the	Potential energy	Thermal energy	Electronic	Kinetic energy
	rest mass energy of electron positron pair, the			energy	
	surplus energy is shared by the pair as				
7.	Pair production can be studied with	Ultraviolet rays	X-rays	Microwaves	γ-rays
8.	The wavelength of the wave associated with the	Directly	Directly	Inversely	Inversely
	moving object is	proportional to	proportional to	proportional to	proportional to
		the accelerating	the square of	the square root	the accelerating
		voltage	accelerating	of accelerating	voltage
9	Black body radiations depends upon	The shape and	The velocity of	The	All of these
		nature of the	radiations and	temperature of	
		body	colour of the	the body	
		-	body	-	
10.	Uncertainty arises due to the	Human	Compton effect	Dual nature of	NONE OF
		error		light	THESE
11.	The reverse phenomena of photoelectric effect is	Photo voltaic	Emission of X-	Radio activity	None of these
	called	errect	rays		

SUBJECTIVE TYPE

Total Marks: 18

Time Allowed: 0 Hours 40 Minutes

<u>SECTION – I (SHORT QUESTIONS)</u>

<u>(5×2=10)Marks</u>

- 2. Attempt any FIVE questions. i. Does the dilation means that time really passes more slowly in moving system or that is only seems to pass more slowly?
 - ii. Since mass is a form of energy, can we conclude that a compressed spring has more mass than the same spring when it is not compressed?
 - iii. When ultraviolet light falls on certain dyes, visible light is emitted. Why does this not happen when infra-red light falls on these dyes?
 - iv. Why can red light be used in a photographic dark room when developing films, blue or white light cannot?
 - v. Can pair production take place in vacuum? Explain.
 - vi. What advantages an electron microscope has over an optical microscope?
- vii. We do not notice the de Broglie wavelength for a pitched cricket ball. Explain why?

SECTION – II (ESSAY TYPE) Attempt given question

- 3. Do as directed...
- What is Compton effect. Find expression for Compton shift. i.

(5)

- Yellow light of 577 nm wavelength is incident on a cesium surface. The stopping voltage is found to be ii. 0.25 V. Find
 - (a) The maximum K.E. of the photoelectrons.
 - The work function of (b)

(3)

	AAFAQ ACADEMY – KASUR						
Paper: Physics Chapter (19)		Class: F.Sc. Part – II					
•	DAWN OF MODERN PHYSICS						
Name	e: Roll No: (in word	ds)					
	EVENING GROUP						
SECTION – III (Practical)							
4.	(a)Write answer of TWO questions.	(2×2=4)					
i.	a						
ii.	C						
iii.	V						
iv.	b						
4.	(b)Write procedure to determine the resistance of voltmeter by graph method. (OR)	(3)					
	Write procedure to find the unknown high resistance by using neon flash lamp	D. (3)					
4.	(c)Answer the following questions on the basis of graph drawn betwee	n potential difference					
(V) and charge (Q) .	(4)					
i.	What you conclude from the graph?						
ii.	Find the capacitance of capacitor from the graph.						

Good Luck Ch. Khalid Mahmood Ashraf