RIZWAN ACADEMY – KASUR

Paper: Physics

s Chapter (16 – 17 – 18) Class: F ALTERNATING CURRENT + PHYSICS OF SOLIDS + ELECTRONICS

Class: F.Sc. Part – II

Name: ____

_____ Roll No: (in words) _____

circuit in one direction iscurrent2.The phase angle at +ve peak is $\frac{\pi}{2}$ π $\frac{3\pi}{2}$ 3.The reactance of a capacitor is ωC $\frac{1}{\omega C}$ $\frac{1}{\sqrt{\omega C}}$ 4.The impedance of R-C series, circuit is $\sqrt{R^2 + (\frac{1}{\omega C})^2}$ $\sqrt{R^2 - (\omega C)^2}$ $\sqrt{R^2 - (\omega C)^2}$ 5.The F.M. radio waves have frequency of the order of $10^6 Hz$ $10^4 Hz$ $10^9 Hz$ 16.The ratio of rms value of the applied $10^6 Hz$ $10^4 Hz$ $10^9 Hz$ $10^6 Hz$	you think is r filling two D
Q.No.1: You have four choices for each objective type question as A,B,C and D. The choice which yo correct; fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or or more circles will result in zero mark in that question.Sr.QUESTIONABCNo.Image: Constraint of the circles will result in zero mark in that question.Direct currentAlternating currentNon1.The current which flows through the circuit in one direction isEddy currentDirect currentAlternating currentNon2.The phase angle at +ve peak is $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{3\pi}{2}$ $\frac{\pi}{\sqrt{\omega C}}$ 3.The reactance of a capacitor is 	r filling two D
or more circles will result in zero mark in that question.Sr.QUESTIONABCNo.1.The current which flows through the circuit in one direction isEddy currentDirect currentAlternating current2.The phase angle at +ve peak is $\frac{\pi}{2}$ π $\frac{3\pi}{2}$ 3.The reactance of a capacitor is ωC $\frac{1}{\omega C}$ $\frac{1}{\sqrt{\omega C}}$ 4.The impedance of R-C series, circuit is $\sqrt{R^2 + (\frac{1}{\omega C})^2}$ $\sqrt{R^2 - (\omega C)^2}$ $\sqrt{R^2 - (\omega C)^2}$ 5.The F.M. radio waves have frequency of the order of $10^6 Hz$ $10^4 Hz$ $10^9 Hz$ 16.The ratio of rms value of the applied voltage to rms value of alternatingImpedanceCapacitanceConductanceRe	D
Sr. No.QUESTIONABC1.The current which flows through the circuit in one direction isEddy currentDirect currentAlternating currentNon2.The phase angle at +ve peak is $\frac{\pi}{2}$ π $\frac{3\pi}{2}$ $\frac{3\pi}{2}$ $\frac{3\pi}{2}$ 3.The reactance of a capacitor is ωC $\frac{1}{\omega C}$ $\frac{1}{\sqrt{\omega C}}$ $\frac{1}{\sqrt{\omega C}}$ 4.The impedance of R-C series, circuit is $\sqrt{R^2 + (\frac{1}{\omega C})^2}$ $\sqrt{R^2 - (\omega C)^2}$ $\sqrt{R^2 - (\omega C)^2}$ \sqrt{R} 5.The F.M. radio waves have frequency 	
No.Image: ConductanceImage: Conductance<	
InterviewInterviewInterviewInterviewInterviewInterviewcircuit in one direction isThe phase angle at +ve peak is $\frac{\pi}{2}$ π $\frac{3\pi}{2}$ 3.The reactance of a capacitor is ωC $\frac{1}{\omega C}$ $\frac{1}{\sqrt{\omega C}}$ 4.The impedance of R-C series, circuit is $\sqrt{R^2 + (\frac{1}{\omega C})^2}$ $\sqrt{R^2 - (\omega C)^2}$ $\sqrt{R^2 - (\omega C)^2}$ 5.The F.M. radio waves have frequency of the order of $10^6 Hz$ $10^4 Hz$ $10^9 Hz$ 1 6.The ratio of rms value of the applied voltage to rms value of alternatingImpedanceCapacitanceConductanceRe	
$\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ $\frac{\pi}{2}$ 3.The reactance of a capacitor is ωC $\frac{1}{\omega C}$ $\frac{1}{\sqrt{\omega C}}$ 4.The impedance of R-C series, circuit is $\sqrt{R^2 + (\frac{1}{\omega C})^2}$ $\sqrt{R^2 + (\omega C)^2}$ $\sqrt{R^2 - (\omega C)^2}$ $\sqrt{R^2 - (\omega C)^2}$ 5.The F.M. radio waves have frequency of the order of $10^6 Hz$ $10^4 Hz$ $10^9 Hz$ 1 6.The ratio of rms value of the applied voltage to rms value of alternatingImpedanceCapacitanceConductanceRe	e of these
$\omega \in C$ $\frac{1}{\omega C}$ $\frac{1}{\sqrt{\omega C}}$ 4.The impedance of R-C series, circuit is $\sqrt{R^2 + (\frac{1}{\omega C})^2}$ $\sqrt{R^2 + (\omega C)^2}$ $\sqrt{R^2 - (\omega C)^2}$ $\sqrt{R^2 - (\omega C)^2}$ 5.The F.M. radio waves have frequency of the order of $10^6 Hz$ $10^4 Hz$ $10^9 Hz$ 1 6.The ratio of rms value of the applied voltage to rms value of alternatingImpedanceCapacitanceConductanceRe	2π
4.The impedance of R-C series, circuit is $\sqrt{R^2 + (\frac{1}{\omega C})^2}$ $\sqrt{R^2 + (\omega C)^2}$ $\sqrt{R^2 - (\omega C)^2}$ $\sqrt{R^2 - (\omega C)^2}$ $\sqrt{R^2 - (\omega C)^2}$ 5.The F.M. radio waves have frequency of the order of $10^6 Hz$ $10^4 Hz$ $10^9 Hz$ 1 6.The ratio of rms value of the applied voltage to rms value of alternatingImpedanceCapacitanceConductanceRe	$\sqrt{\omega C}$
of the order of of 6. The ratio of rms value of the applied voltage to rms value of alternating Impedance Capacitance Conductance Re	$+(\frac{1}{\omega C})$
voltage to rms value of alternating Impedance Capacitance Conductance Re	0^{10} Hz
	esistance
7. The frequency of electromagnetic waves received through L-C circuit is adjusted by Capacitor Capacitor Cop	pper wire
8. In free space, the speed of $3 \times 10^5 m \cdot s^{-1}$ $3 \times 10^5 km \cdot s^{-1}$ $3 \times 10^{-8} m \cdot s^{-1}$ Non-	e of these
9. The pattern of <i>NaCl</i> particles have a Triangular Square Cubic Red	ctangular
10.When stress is increased beyond elastic limit and material is permanently changed this property isPermanent stressElasticityYield strengthPlace	lasticity
	ensionless
12. The band above the valance band is conduction called Conduction band Filled band Forbidden band Occur	upied band
called	ohesive
	e of these
generator	omputer
by inverting the output of	
17. Automatic functioning of street light can be done by the use of Rectifier Inductor Comparator Street	e of these

Paper: Physics

RIZWAN ACADEMY – KASUR

Chapter (16 – 17 – 18)

Name:

ALTERNATING CURRENT + PHYSICS OF SOLIDS + ELECTRONICS

_ Roll No: (in words) _

Class: F.Sc. Part – II

(5)

SUBJECTIVE TYPE

Total Marks: 18

Time Allowed: 0 Hours 50 Minutes <u>SECTION – I (SHORT QUESTIONS)</u>

- 2. <u>Attempt any FIVE questions.</u> (5×2=10)Marks
 i. Explain the conditions under which electromagnetic waves are produced from a source?
 ii. How the reception of a particular radio station is selected on your radio set?
 iii. A circuit contains an iron-cored inductor, a switch and a D.C. source arranged in series. The switch is closed and after an interval re-opened. Explain why a spark jumps across the switch contacts?
 iiii. Draw a strass strain surve for ductile meterial and then define terms. Electin limit, Viold point and ultimate
 - iv. Draw a stress-strain curve for ductile material and then define terms: Elastic limit, Yield point and ultimate tensile stress.
 - v. Distinguish between intrinsic and extrinsic semi conductors. How would you obtain n-type and p-type material from pure silicon? Illustrate it by schematic diagram.
 - vi. What is principle of virtual ground? Apply it to find the gain of an inverting amplifier.
- vii. Why charge carriers are not present in the depletion region?

<u>SECTION – II (ESSAY TYPE) Attempt given question</u>

3. Do as directed...

- i. What is root mean square value of A.C? Describe flow of A.C. through a capacitor in detail.
- ii. A cylindrical copper wire and a cylindrical steel wire each of length 1 5*m* 1.5m and diameter 2 0*mm* are joined one end to from a composite wire 3 0*m* Long. The wire is loaded until its length becomes 3 003*m*. Calculate the strain in copper and steel wires and the force applied to the wire. (Young's Modulus of Copper is 1 2×10¹¹ Pa and for steel is 2 0×10¹¹ Pa). (3)

	RIZWAN ACADEMY – KASUR	
s	Chapter (16 – 17 – 18)	Class: F
	ALTERNATING CURRENT + PHYSICS OF SOLIDS + ELECTRO	DNICS

Paper:	Physics
--------	---------

Class: F.Sc. Part – II

Name: _

_____ Roll No: (in words) _____

	SECTION – III (Practical)	
4.	(a)Write answer of TWO questions.	(2×2=4)
i.	а	
ii.	C	
iii.	V	
iv.	b	
4.	(b)Write procedure to determine the resistance of voltmeter by graph method. (OR)	(3)
	Write procedure to find the unknown high resistance by using neon flash lamp.	(3)
4.	(c)Answer the following questions on the basis of graph drawn between pote	ential difference
	(V) and charge (Q) .	(4)
i. ii.	What you conclude from the graph? Find the capacitance of capacitor from the graph.	

Good Luck Ch. Khalid Mahmood Ashraf