AAFAQ ACADEMY – KASUR					
	Paper: Physics	Chapter (3)1 FORCE	Class:	F.Sc. Part – I
	Name:	JIION AND		(in words)	
	Name	EVENING GR	OUP		
		OBJECTIVE 1	YPE		
	Total Marks: 11 Paper Code: Total Time: 10 Minutes				
	NOTE: Write your Roll No. in space provided. Using lead pencil will result in loss of marks.				
	Q.No.1: You have four choices for each objective type question as A,B,C and D. The choice which you think is				
	correct; fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two				
C	or more circles will result in zero mark in that	question.		0	
Sr.	QUESTION	A	В	C	D
1.	A car starts from rest and attains a speed of				
	All $m = s^{-1}$ in 20 s. Its average acceleration	0.5	2.0	4.0	8.0
	$40 \text{ m} \bullet 3$ III 203. Its average acceleration				
2	In $m \bullet s^-$ is				
Ζ.	A body dropped from a tower with zero	80 m	20 m	160 m	40 m
	velocity, reaches the ground in $4 \bullet 0S$. The	00111	2011	100 ///	40 ///
3	The angle of projection for which the			(1)	
5.	maximum beight and the horizontal range of	15 ⁰	$\epsilon 0^0$	$\tan^{-1}\left(\frac{1}{-1}\right)$	$ton^{-1}(4)$
	a projectile are equal is	43	00	(4)	tan (4)
4.	A rocket works on the principle of	Mass	Linear	Energy	Angular
	conservation of		momentum		momentum
5.	The area between the velocity and the time	Speed of the	Acceleration	Momentum of	Distance
	axis in the velocity time graph is numerically	object	of the object	the object	covered by
	equal to the				the object
6.	Distance covered by a freely falling body in	4 • 9 <i>m</i>	19•6 <i>m</i>	28m	10 <i>m</i>
	2 s will be				
7.	During the projectile motion, the horizontal	Changes with	Becomes zero	Remains	Increases with
	component of velocity	time		constant	time
8.	Dimensions of impulse is similar to the dimensions of	Torque	Work	Force	Momentum
9.	The horizontal range of a moving projectile depends upon	Mass of projectile	Angle of projection	Initial velocity	Both (A) and (B)
10.	All objects in free fall near the surface of	Uniform	Variable	No	Negative
	earth move towards the earth with	acceleration	acceleration	acceleration	acceleration
11.	Distance travelled by a body falling freely from in 1^{st} , 2^{nd} and 3^{rd} seconds are in the ratio	1:4:9	1:3:5	1:2:3	1:2:5

SUBJECTIVE TYPE

Total Marks: 18

<u>SECTION – I (SHORT QUESTIONS)</u>

Time Allowed: 0 Hours 50 Minutes

(5×2=10)Marks

2. Attempt any FIVE questions.

- i. At what point or points in its path does a projectile have its minimum speed, its maximum speed?
- ii. Explain the circumstances when velocity and acceleration are (a) parallel (b) perpendicular.
- iii. Show that horizontal range are equal at 30° and 60° .
- iv. Which will be more effective in knocking a bear down? a rubber bullet or a lead bullet of the same momentum.
- $\boldsymbol{v}.$ Define impulse and show that how it is related to linear momentum?

vi. Prove that
$$t = \frac{2v_i Sin\theta}{dt}$$
.

vii. Can the velocity of an object reverse the direction when acceleration is constant?

SECTION – II (ESSAY TYPE) Attempt given question

3. Do as directed...

- What are elastic and inelastic collisions? Discuss the elastic collision in one dimension and prove that Speed of approach = Speed of separation. Also find the expression for velocity of incident and target particle before and after the collision.
- A ball is thrown horizontally from a height of 10m with velocity of 21 ms⁻¹. How far off it hit the ground and with what velocity?
 (3)

Paper: Physics

AAFAQ ACADEMY – KASUR Chapter (3)1 MOTION AND FORCE

Class: F.Sc. Part – I

 $(2 \times 2 = 4)$

(3)

Name: ___

_____ Roll No: (in words) ____

EVENING GROUP

SECTION – III (Practical)

- 4. (a) Write answer of TWO questions.
- i. State conditions of equilibrium.
- **ii.** What is torque? Give its dimensions.
- iii. Define centre of gravity.
- **4. (b)**Write procedure to verify second condition of equilibrium.
- 4. (c)Answer the following questions on the basis of graph drawn between time period (*T*) and extension (*x*).
 - i. What you conclude from the graph?
 - ii. Find the acceleration due to gravity from the graph.

Good Luck Ch. Khalid Mahmood Ashraf