AAFAQ ACADEMY – KASUR

Paper: Physics Chapter (4)1 Class: F.Sc. Part – I WORK AND ENERGY

Name: ______ Roll No: (in words) _____

EVENING GROUP

OBJECTIVE TYPE

Total Marks: 11 Paper Code: _____ Total Time: 10 Minutes

NOTE: Write your **Roll No.** in space provided. Using lead pencil will result in loss of marks.

Q.No.1: You have four choices for each objective type question as A,B,C and D. The choice which you think is correct; fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two

or more circles will result in zero mark in that question.

	or more circles will result in zero mark in that question.										
Sr.	QUESTION	Α	В	С	D						
No.											
1.	The work done in holding a mass of 50 kg at	0J	25J	100J	980J						
	a height of 2 m above the ground is										
2.	A $1 \bullet 0kg$ mass has a K.E of $1J$ when its	$0 \bullet 45m \bullet s^{-1}$	$1 \bullet 0m \bullet s^{-1}$	$1 \bullet 4m \bullet s^{-1}$	$4 \bullet 4m \bullet s^{-1}$						
	speed is										
3.	A bullet of mass $10 \bullet 0g$ hits a target and										
	penetrates $2 \bullet 0cm$ into it. If the average	$10 \bullet 0m \bullet s^{-1}$	$10\sqrt{2}m \bullet s^{-1}$	$20 \bullet 0m \bullet s^{-1}$	$20\sqrt{2}m \bullet s^{-1}$						
	resistance offered by the target is $100N$,		-								
	then the velocity with which the bullet hits										
	the target is										
4.	\rightarrow \wedge \wedge \wedge										
	A force $F = 5i + 6j - 4k$ acting on a	10 units	18 units	11 units	15 units						
	body, produces displacement										
	S = 6i + 5k. Work done by the force is										
5.	The tidal energy is due to the gravitational	Sun	Moon	Mars	Stars						
	pull of										
6.	The unit of power SI (watt) is equivalent to	$kg \bullet m^2 \bullet s^{-3}$	$kg \bullet m \bullet s^{-2}$	$kg \bullet m^2 \bullet s^{-2}$	None of these						
7.	The sources of geothermal energy is		The	The rotation	The rotation						
		The fusion in	radioactive	of Earth	of Earth round						
		sun	decay in the	around sun	its own axis						
			Earth's interior								
8.	If speed of body is increased by three times,	Three times	Two times	Six times	None of these						
	its K.E. increased by	1	1	1	1						
9.	If moon's radius is $1600km$ and g on its	$1600m \bullet s^{-1}$	$506m \bullet s^{-1}$	$50 \bullet 6m \bullet s^{-1}$	$2263m \bullet s^{-1}$						
	surface is $1 \bullet 6m \bullet s^{-2}$, then the escape										
	velocity on the moon is										
10.	Absolute gravitational P.E. is independent of	G	M	8	m						
11.	Work done in gravitational field	Along a closed	Independent of	Depends of the	Both (A) and						
		path is zero	the path	path followed	(B)						
			followed								

SUBJECTIVE TYPE

Total Marks: 18 Time Allowed: 0 Hours 50 Minutes SECTION II (SHORT QUESTIONS)

2. Attempt any FIVE questions.

 $(5\times2=10)$ Marks

- i. In which case is more work done? When a 50kg bag of books is lifted through 20cm, or when a crate of 50kg is pushed through 2m across the floor with a force of 50N?
- ii. Name and shortly describe two methods to convert biomass in to fuel.
- **iii.** When a rocket re-enters the atmosphere, its nose cone becomes very hot. Where this heat energy does comes from?
- iv. Derive relation between SI and commercial units of energy.
- **v.** State and prove work energy principle.
- vi. A girl drops a cup from a certain height, which breaks into pieces. What energy changes are involved?
- vii. A 70 kg man runs up a long flight of stairs in 4S. The vertical height of the stairs is 4.5m. Calculate his power output in watts.

<u>SECTION – II (ESSAY TYPE) Attempt given question</u>

3. Do as directed...

- i. Define conservative field. Prove that work done in conservative field is independent of the path. (5)
- ii. If 100 m³ of water is pumped from a reservoir into a tank, 10 m higher than the reservoir, in 20 minutes. If density of water is 1000 kg m⁻³ find (a) The increase in P.E. (b) The power delivered by the pump. (3)

AAFAQ ACADEMY – KASUR

Paper	Physics Chapter (4)1 Class: F.Sc. Part – I WORK AND ENERGY
Name	Roll No: (in words)
	EVENING GROUP
	SECTION - III (Practical)
4.	(a) Write answer of TWO questions. (2×2=4)
i.	What is simple pendulum?
ii.	Why simple pendulum is suspended such that bob is very close to the floor?
iii.	What is second's pendulum? Give its frequency.
4.	(b) Write procedure to verify law of isochronisms of the simple pendulum. (3)
4.	(c) Answer the following questions on the basis of graph drawn between force (F) and
di	splacement (d) . (4)
i.	What you conclude from the graph?
ii.	Find the area of the graph. What you infer from the area of the graph?

Good Luck Ch. Khalid Mahmood Ashraf

AAFAQ ACADEMY – KASUR

Name:	 Chapte WORK AND		Roll No: (in wo	rds)
	EVENING	GROUP		