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Significant Figures:
Accurately known digits and the first doubtful digit.

A precise measurement is the one which has less absolute uncertainty.

An accurate measurement is one which has less fractional or percentage uncertainty.

Dimensions of Physical Quantity:
[F] = [m]fa] = [M][LT"] = [MLT]

Vector Addition by Rectangular Components

Consider vectors A & B.
Found resultant R by head-to-tail rule.
Did some geometrical work.
From the geometry of the figure,
Ry = Ax +Bx &Ry =Ay +By
Gieneralizing the equations,
Ry = Ay +By +Ce+ ...
& Ry =Ay + By +Cot sivan

The magnitude is, R =R *+R.’

& direction is. Lan@:&

Product of two Vectors

A-B=ABcos0 ; fj:A]k=lﬂ<;=(J & ??:3]:1212:1
A-B AB +AB +AB,

AB AB
AxB=ABsin0f; AxB=-BxA

ixj=k. jxk=i, kxi=] & ixi=jxj=kxk=0

& cosO =

ik
A, A = (AB,-AB)I+(AB -AB,)jHAB, -AB,)k
B




—

Law of conservation of linear momentum

Statement: The toral linear momentum of an isolated system remains constant.

Alternate statement: If there is no external force applied to a system the toial linear
momentum of that system remains constant in lime.
Proof:
For an isolated system,
Let
m; =mass of first ball
m, = mass of second ball
v, = velocity of first ball before collision

v, = velocity of second ball before collision = —-
2 ) - J— v —
v, = velocity of first ball after collision

v, = velocity of second ball after collision @

= action force of first ball e _q; >
= reaction force of second ball L‘; == x

From the definition of impulse we have

STt

Impulse = Fxt=m Ve -m V.,
The impulse (or change in momentum) of first ball is;
Fxt=m, ¥, - m, ¥, s
& the impulse (or change in momentum) of second ball will be;
Fxt= m,¥ - m, ¥, e (2)
adding equations (1) & (2), we have
Fxt+Fxt=(m ¥ -m ¥ )+ (m,7 - m,7,)
or (F+F)t=(m ¥ -m %)+ (m,¥ - m¥,) ....(3)

since action force I is equal and opposite to the reaction force ' |
so we have

F =-F e (B
[rom equations (3) & (4) we have

[F+CF)t=0=(m ¥-m ¥, )+ (m7,- my¥,)

or (m v,-m; V,)+ (m,V,- m¥v,)=0 L)
or m, V,tm,V,= m V| +m,V,
from equation (5) we conclude,

The total linear momenium of an isolated system remains constant.

& from equation (6) we have

Total initial momentum of the system before collision is equal 1o the total final momentum of
the system after collision.




Elastic Collision in One Dimension
Considering two smooth, non-rotating balls of masses m, & m, with initial velocities
v, & v, and their velocities after collision as v; & v).
Applying law of conservation of momentum, we have

— ' ' ‘1}‘ =¥ gb—'ﬁ
mv, +tmv,=mv +m,v, e ()
Also applying law of conservation of K.E. we have @ @
Yomvi T m,vi= Y% m v+ Yem, v 2) Vel '{,;__,_
From the above two equations, finding final velocities

v & v, in terms of known quantities of m,,m,, v, &v,.
Solving these equations to get following two equations.

., _ m —m 2m
vi= —L—2vy + v, a(3)
m, +m, m, +m,
2m m, —m
vy, = Ly, + 2 —Lv, e (4)
: m, +m, m, +m,
Some cases of special interest: . —
‘lff- vb
Case 1 When m, = m, @ @
From equations (3) & (4) we get
Vi=v, &V, = v,

We conclude : When two particles of equal masses collide elastically, they exchange
their velocities. :

—
Case 2 Whenm =m, & v, =0 Vi=o
From equations (3) & (4) we get @ @

vi =0 & v, = v
We conclude : The incident particle which was moving with v,, comes to rest while the

target particle that was at rest begins to move with velocity v,. 7
L=0
Case3 Whenm, » m & v, =0 0
From equations (3) & (4) we get ",

vi =-v, &V, = 0
We conclude: The small incident particle just bounces off in the opposite direction
while the heavy target remains almost motionless.

Case4 When m, » m, & v, =0 @
From equations (3) & (4) we get

v, =v, &v,= 2y
We conclude: The incident particle keeps on moving without loosing much energy,
while the target particle moves with the double velocity.

iz

=0

0O

z
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For elastic collision, consider two smooth, non-rotating balls,
law of conservation of momentum gives

m v, + m, v, =m v +mv,
or m (v, —v)=m,(v,-v,) e (D
from law of conservation of KE
Vom vi tY% m,v;= % m v+ % m, v}
m (v, —v, ) =m, (v —vi) ... 2)
Dividing eq. (2) by eqg. (1) gives
(v, + V) = (V) +v,) or (v, =V,) =(Vy —=v})
or (vi=v)=—(vj=vy)
The above equation shows that the magnitude of relative velocity of approach is
equal to the magnitude of relative velocity of separation




Projectile Motion
Definitions:
“Projectile motion is two dimensional motion under constant
acceleration due to  gravity”
Projectile: “An object launched in an arbitrary direction in space with the initial
velocity having no mechanism of propulsion is called a projectile”

Consider motion of a ball thrown horizontally;

For horizontal motion: y
S=vt a5

X =V Xt x = horizontal distance P> ToC
For vertical motion: ™
We have , S =y = vertical distance Y ‘b\—?l%(_

S=vit+'at vi =0 7
VIR o " ’) g
or| Y=gt 4 X

Now consider a projectile fired in a direction 0 with horizontal.

Horizontal component remains constant. Y
Using vp = v, +at (v = Vi
or Vi = Vix
Viy = Vix = Vicos D a=a, =0
- -

for Vertical component:

- 4
using v = v; tat Vi = Vry
) vi = vj sin @
5 Vi vi sinB - gt a=-g
\

so Magnitude of velocity at any instant:

and Angle ¢:

Maximum height h:
[for its definition see the “Definitions™ book]
Using equation,

2aS=v; —v} a=-g
or - 2(-g)h = (0y — (v, sin 0y’ S = height = h
or  —2gh =—vf sin” @ Vi = Viy =0
visin’0 Vi = Viy = vjsin{
ar h=-
2g
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Time of flight t:
[for its definition see the “Detfinitions” book]
S=h=0

Using equation  S=vit+'2a t
or 0 =visin0t+%(-g)t Vi = Viy = Vv;sin0
or (J:Visinet-]/zgt2 a=-g

— ~ 2v;sin0
g
Time to reach at max. height:
Using vy = v +at _
or 0= vyisinOt —g t vi =0
- v; = v;sinO
Or _v;sin 0 a=-g
g
Range R:
[for its definition see the “Definitions”™ book]
Using S =vit 5 =R
2v sin0
o1 R:\IUUSGL V = Vix = Vjcosb
g
o 2v,sin0
or R=--2sinBcosBO (=t
o g
sin (B + ¢) = sinf cosd + cosO sin ¢

ar sin (0 40 ) = sinb cost +cosb sind

or s8in2 = 2sinf cos 6

or

Maximum Range R,..:
We know that maximum value of sin0 is sin 90" = 1.

So from the above equation, for maximum value,

sin260 =1 or 20=90° or 6 =45°
= R = i
max g
Applications:
1. Ballistic Missiles: [see the “Definitions™ book]

The ballistic missiles are useful only for short ranges. For long ranges
powered and remote contro! guided missiles are used.
2. Bazooka: A weapon consisting of a launching tube for military rockets, used by infantry
personnel against armored vehicles such as tanks. Now developed an
explosive projectile that, using a shaped charge, and are able to penetrate armor.
3. Cannon: The first cannon used gunpowder charges to fire stones or metal balls.
Meodern cannon demonstrate a laser-guided artillery shell. or “cannon-
launched guided projectile,” that can be fired with great accuracy.
4. Rifle:  Any firearm having the interior of its barrel rifled, that is, engraved with spiral
grooves so as to give spin to a projectile as it is fired.
5. Explosives: They are used as propellants for projectiles and rockets and as bursting charges

for demolition purposes and for projectiles, bombs, and mines.
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Work Done by Gré\}itational Field

Definitions:

Gravitational field : “The space around the earth within which it exerts a
force of attraction on other bodies.”

Conservative field : “In which the work done between two points in the field is
independent of the path followed between the two points.”

To prove:
1. Work done in the Earth’s gravitational field is independent of the path followed.
2. Total work done along a closed path in a gravitational field is equal to zero.

Consider 8
An object of mass m being Coe - -;EQ'- o
displaced with constant f T
velocity from point A to B o pzf P3 pj_T
along various paths under || B
oravitational force. A N D, l
i} To calculate work done along the path ADB
Waoeg = Wap + Wp_p W=F-d
= mgd c0s90° + mgh cos180° or W=Fdcos® F=mg
= 0 + mgh(-1) or W=mghcosd d=h
or W (1) fcos90"=0
e e cos 180°=-1
i1) To calculate work done along the path ACB
Wacs = Was e +Wep since directions of
= mgh cos180° + mgd cos90° mg s downward &
= mgh(-1) + 0 o h is upward so 0 = 180"
or v (2) B
Wapp = -mgh T
iii) To calculate work done along . v A
the curved path 3 e’ JL
Was = 2 mgdcosd pm—m -
=mg ( %Ax‘ + %Ay") (directions of mg & x
=mg (x; cos 90° + %, cos 90° + ....... are 1 s00=90" &
+ vy, cos 180° +y, cos 180°+ .......) | directions of mg & y
=mg (éA)‘(—l)) are opposite so 6 = 180"
or Wap = -mgh s (3) LZ' Ay, =h
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iii)  To calculate work done along the path B to A
Selecting any one of the paths. Lets take path 1.
Wia = Wpg T Wpoia
= mgh cos 0° + mgd cos 90°

= mgh + 0
or Wga = mgh v (4)
Conclusion

Equations (1), (2) & (3) show that
Work done in the Earth’s gravitational field is independent of the path followed.

Adding equations (3) & (4) , we have
Wi Lnosa = Wag + Wy =-mgh+mgh =0

So  Work done along a closed path in a gravitational field is zero

Examples of Conservative field:

i) Gravitational field
i) Electric field
111) Magnetic field

While frictional forces and air resistance made non-conservative forces and
corresponding field, e.g. rough surfaces and air, will be non-conservative field.

sk kb ok ok Rk F

Some information:

Work, in physics, product of a force applied to a body and the displacement of the body
in the direction of the applied force. While work is done on a body, there is a transfer of
energy to the body, and so work can be said to be energy in transit.

Gravitation may also be described in a completely different way. A massive object,
such as the earth, may be thought of as producing a condition in space around it called a
cravitational field. This field causes objects in space to experience a force. The
cravitational field around the earth, for instance, produces a downward force on objects
near the earth surface. The field viewpoint is an alternative to the viewpoint that objects
can affect each other across distance. This way of thinking about interactions has
proved to be very important in the development of modern physics.




Absolute Potential Energy

Definition:
Absolute potential energy : “Energy required to move a mass from the carth up to an
infinite distance™.

To calculate the value of absolute gravitational potential energy,

Consider
A body of mass m which moves from point
| to far off point N with constant velocity in
the gravitational field. N 7
As gravitational force changes with distance,
so divide the distance between 1 to N into
small steps. each of length Ar.

4_ -
We have 2]
1 E A ?
Mean distance = r:r'jL—rz e (D ) = i
& 11 =Ar @) !
or =1 +Ar () 4,2
putting the value of r; from eq. (3) in eq. (1), we get

T+ +HAr
r= el

2
) [rl +1, +Ar Jz
or r = — 0
i : EuﬂL
2 (Zr, Arj"
or r\=| —+—
22
. L ()
or ' =1+ 7 +1,Ar
(ar)’
r 2
Neglecting T (Ar)2 <1’
So r’ =r +n, (r2 =) [from eq. (2)]

2 2 2
or 1 =1 +1n, -1

or 1‘2:1'|1“2 v ()

Now, if M is the mass of the earth, the gravitational force at the center of the small step is

F-gMm e (5)
2
[rom equations (4) and (5) we get
p=gMm . (6)
L1

As this force is assumed to be constant during the interval Ar, so the work done is

W,_, = F- AT = FArcos180° = —FAr




M
or W_,=-G m(r2 -1)
LI
, 11
or W _,=-GMm| ———
L5
. o1
similarly W, . =—GMm[———]
L %
[
W, ,, = —GMm(— ——J
Lo

So the total work done is

3—d

W, =W_ ,+W,  +W,_, +..

total

= —GMli—i}'[—I‘—LJ+[l—lJ+
I n L5 o

1 1 1 1

= —GMm{———+——+

L LK

or W .= —,GMm[L = L}
Lo Iy

[ Ar=r,—1
r W, =—-GMm-=2 I
u o
or =-GMm L
I‘I r] rlrg
1

______ (2]

[f the point N is at an infinite distance from the Earth, then

Lo
r

—GMim
I

So the general expression will be

Hence W _ =

total

_ —GMm

T

U

- (N

[£-0]

[ U is Gravitational Potential Energy |

Negative sign shows that when r increases U becomes less negative, i.e. as we

raise a body upward PE increases.

laking r, =R , the radius of Earth, then this total work done would be

cquivalent to the absolute gravitational potential energy,

So

. (8)




Escape Velocity 15
Definitions:
Escape velocity : “The initial velocity, which a projectile must have at the earth’s surface
in order to go out of earth’s gravitational ﬁeld.”

(Initial ) KE = % m v? [KE=%mv =KEexv

esc

Absolute potential energy : “Energy required to move a mass from the earth up to an
infinite distance.”,

L GMm _ GMm

R R
The Energy [Initial KE / Increase in PE] needed to go free from ‘g’ [earth’s gravitational field /
infinite distance] implies,

=

K]-_‘:lllj[tﬂl = PEameutc We have I = mg & F= G}I;Ag'ln
1 5 GMmnm GMm
or —mv. = . = =
2 esc R mg RZ
»  2G6MxR  2GMR GM
Vesc:7=—2 or g=4‘7
_ RxR R o R%,
or v, =2Rx ?{I\f =2Rg

or Voo = 28R
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Intercdnversion of PE & KE

Definitions:
Kinetic Energy : “The energy possessed by a body due to its motion.”
Potential energy : “Itis the energy possessed by a body due (o its position.”

To show that the total Energy at each point (A, B & C) remains same.

Consider
A body of mass m at rest, at a height h above the surface of the Earth.

At point A
Total Energy =T =PE + KE
or T=mgh+0 = | mgh

At point B PE= mgi\ )
First calculating vp . by using the equation Ke=10 @ A »‘F
v; =v! +2aS 1
putting the values 4
vi, =0+2gx =2gx *
Now T=PE+KE
or T =mg(h-x) + % m x 2gx PE:‘“&“@:} 8 h
or T =mgh-mgx+mgx KE= mgt
or T = mgh
At point C _ - . 4
First calculating vc , by using the equation
vi = v} +2a8
putting lh’c values - PE=0 . C ;1;__
ve =0+2gh =2gh KE= Ma;. =y

Now T=PE+KE
or T =0 + Ymx2gh

mgh

or T =

It shows as the body falls, its velocity increases that results increase in KE and its height
decreases that results decrease in PE. So we conclude

Loss of PE = Gain in KE e (@)

or mg(h, —h,)= %m(‘/g -v)

From equation (o), we have
PE = W. done = KE
or  Fdcos® = m v’
Assuming a frictional force f is present during the downward motion, then
Total downward force will be (F - ) =(mg -1) , so
(mg-fhecos0® =% mv* ‘
mgh -fh = %mv’

T mgh = %mv* +fh

or Loss of PE = Gain in KE + W. done against friction




Centripetal Force

Definitions:

Centripetal Force: “The force needed to bend the normally straight path of the particle

into a circular path.”

Or “A force that causes a body to move in a circular path.”

Centripetal Acceleration: “The instantaneous acceleration of an object traveling with uniform
speed inacircle and is directed towards the center of the circle.”

Or *“An acceleration directed towards the center of a circle.”

To calculate the magnitude of Centripetal Acceleration

Consider
m = mass of the particle
® = angular speed of the particle
r = radius of the circle
v = its linear velocity along the tangent
v = velocity at point A
vy = velocity at point B
since two velocities at points A and B are same,

50 Vi=v =V (1)
from fig. (b), we have
V,+AV=Y,
or AvV=v, -V, . (2)
now angle AOB = angle DOE = A0
for small angle chord Av = arc DE . (3)
and sin0 = 0 4)
We have
sin = Av
v,
putting the values from equations (1), (3) & (4).
0= & [for small change; 8=A8 ]
or vAQ = Av e (5)
multiplying and dividing by At to L.H.S. , we get
v L\._G At=Av
Al
or Av = vot . (6)
Av
o — =V (7
m (7)
Now we define
AV
a=— . (8
i (8)
SO a4 = v - (9)

oo (10)

or

[0=0/t]

(A Geometry Theorem:

Angle between the
we get perpendiculars of the
sides of an angle is

equal to that angle.

Taylor’s series expansion for:
sinf =6 - 9—-+0—-— .......
3-2.1 5!

VETIo
or om=v/r
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In vector form,

S e (11)
S

where negative sign indicates that the acceleration is towards the center. [It is indicated by
angle ¢ in fig. (a) |

To calculate Centripetal Force

We have
F=mi e (1)
from equations (11) & (12), we get
2 1
F=-mo’ = § e (13)
2
oM
I

or in angular measure, we have

2
F, =mro

EXAMPLES

|. A stone is whirled in a horizontal circle by means of a string.

2. Planets move around the sun.

3. When a racing car moves round a circular track the friction at the wheels
provide the centripetal force.

Artificial Gravity
We define
Artificial gravity: “The gravity like effect produced in orbiting space ship to overcome
weightlessness.”

We have
a =ro o=0/t =2n/T

or ac:R[z—ﬂJ r=R

T

2

2n .
or aL,:Rl— . [f=1{Tor T=1/f

%

10 , _a
or a =Ran’f or [ =—

Rdr:

2V R

to increase { so that a; equals g, and from the above equation, we have

_ s
“2n VR

When the space ship rotates with this frequency, the artificial gravity like Earth is provided to
the inhabitants of the space ship.




Rotational KE of a Disc & a Hoop

Definitions:

Disc: A (lat circular plate or anything resembling it.”

Hoop: “A circular band such like a ring; anything curved like a ring.”

[0 prove Vgise > Viaap

For Disc,

PE at the top = total KE at the bottom
pE[Up = KEpyas + KEi
ie. mgh = Y%myv +%Ie
or mgh= Ymv +%(%m’) /1)
or mgh = 2m v+ Yam v
or gh = %y’

5 gl
\»":—E‘—] or s €0
2]

For Hoop,

PE at the top = total KE at the bottom
I)Elop = KEins + KErot
ie. mgh=Y%mv +%le
or mgh= 'Y%mv +% (mr? ) (Vv /1)
or mgh = '2m v+ my
al gh’ =

or v- =gh or Vi =y 2h s (2)

from equations (1) & (2), we conclude

Vdise = Vhoop

when rolls down an inclined plane of height h.

for a disc:
7

I =Ymr

w=v/r

for an hoop:
I = m’
w=v/r
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o Terminal velocity
Definitions:
Terminal velocity:” At the end. the extreme, or maximum velocity reached by certain object”.
Density (p): “The ratio of the mass of a substance to its volume”.
Stokes’ law: In fluid resistance, the drag force F of a sphere of radius r moving with a
velocity v through a fluid of infinite extent is
F=6nmnrv, wherenisthe viscosity.
Terminal velocity of water droplet moving in air:

The dragging force experienced by a tiny water droplet (of fog or mist) falling freely
will be given by Stokes Law as:

Fp = 6mnrv (D)
The weight of the droplet is given by
W = mg ...(2)
so the net downward force will be
F = w- Fr)
or F = mg - 6mmrv | ..(3)
From 2™ Law of motion,
F = ma (4
From egs. (3) & (4), we have ‘
ma = mg - 6mNrv
or a = mg - 6mnrv
m
or a = g - 6mnrv
m
At terminal velocityv = vi & a = 0,50
0 = g - 6mnrvy
m
or bmnrvy = mg
or vr = mg/6émmr ‘ c(5)
or vr = g4/3nr3ggg [p = mass = m
6nnr vol. 43n 1

. [orm = (4/3)nr)p
or vi = 43xnr)pg

onn
vr = 2pg ?
or i on ..(6)
since 2pg = constant ,
oM
) ve oo r )

i.e. The terminal velocity of a sphere of given material varies directly
with the square of the radius.




Equation of Continuity
STATEMENT: '

“The product of cross-sectional area of the pipe and the fluid speed at any point along the
pipe is a constant”. Mathematically, Ajv) =A;v» —

PROOF: nL
Consider

A fluid flowing through a pipe A<
of non-uniform size. —

And the flow of the liquid is A

streamline and incompressible. A,

—»f AY |

Let
. Asshown in the figure
At left side:
Velocity of the fluid = v,
Move through distance = A x; Density = mass / volume
Arca of cross-section = A p=m/V
Sovolume = V| =Ax,. A orm=pV
& muass passing during At
Amp=p Vi = prAx . Ay S=vt
or Amy =pp Ay vy . At (1) orAx= vt
At right side:
Velocity of the fluid = vz
Move through distance = A x;
Area of cross-section = A,
So volume = V,=Ax, . A,
& mass passing during At
Amy=pa V, = P2 Axs . Az
or Am; =pr Ay vy At e (2)
As the streamline flow is incompressible, so
Am; = Ams ' RN 5
from equations (1), (2) & (3) we have
P Ayvy At = pz Az v At
since density is constant, i.e., py=p2 =p , S0
pPAIVI =pArva
or Arvi = Axva
Which is Equation of Continuity.

Core: pz% or m=pV=pxAx A =pAvAl [S=vt]
as Am; = Am;
S0 pAVAL= pAv,AL or A, = ALy,
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Bernoulli’s Equation
STATEMENT:

In a steady frictionless motion of a fluid acted on by external forces which possess a gravitational
potential pgh, then
P+ % pv+ pgh= constant
where P & p are the pressure and density of the fluid, v is the velocity of
the fluid along a streamline.

PROOF:
Consider

A uid is flowing , (in the figure) _s| AX [
And assume;
I} The fluid is incompressible.
2) Non-viscous,
3) Moving with streamline flow

Lct (shown in the figure)
A liquid of mass (Am), flowing
through a pipe during time (t),

Al left side:

Pressure = P

Velocity of the fluid = v,
Move through distance = Ax;
Area of cross-section = A P RS T DTSt PP P LT P
Height from the bottom = Iy

Atright side:

(for the same mass Am )
Pressure = Ps
Velocity of the fluid = v,
Move through distance = Ax;
Area of cross-section = Ay
Height from the bottom = h;

We have

Pressure =P =Force/Area =F/AorF=P A 1
Work done = W = force x displacement =F x Ax=PA Ax....(2)
Also S=Ax =vt : el a)

& p=m/V orV=m/p
as volume = area x length

so A.Ax =Avt=V=m/lp 4
for the same mass flowing during time t, through both ends, the volume will be
Alvit= Agvat =Avt crmsl D)
Now from equations (2) & (4) we have
W =PAvt
or W=Pm/p cn(6)
Now we have .
Kinetic energy = KE =2 m v~ T )

& Potential energy=PE=mgh (8]




Taking mass (Am) of the fluid flowing from upper end to lower end as same.
Applying the Law of conservation of energy to this volume ((Am) of fluid:

Net Work done = change in KE + change in PE
or \’\‘:uppcz'cnd + Wiowerend = {KEuppcr —KEjower } + { PEupper - PEInwer. } eee(0)
From equations (6) to (9) we have

Pim/p +{(-P)m/p} = %mvy’ - 1/2111\’1? +mghy -mgh
s m/p(P-Py)= m(% vt - Vv o+ ghy -ghy )

or Pi-Pa= p(% vl - %v? +ghy-gh )

or Py-Py = '/szzz- VzPVlz + pghy -pgh

or P+ Vapvii+pghi= Py +¥pw’+ pgh
or P+ '/sz2+ pgh= constant

Which 1s Bernoulli’s Equation.

Core: Net W = AKE + APE or W,+W,_ =KE, -KE, +PE,, -PE

m

—Fd = _ — =E —_m,
W_I-d_PAd_PV_Pp [P=E/ &p_A]

i 2 l 2
P‘Eﬂfﬁ)gifmv;ffmv;+mgh27mgh‘
p Tp 2 72

or P-P= %PV% *%PV\Z +pgh, —pgh,

I 1 1
or P +5p\«'|1 +pgh, =P, +5pv§ +pgh, or Pﬁ—ipv2 +pgh = constant

Applications:

Torricelli’s Theorem

The speed of efflux is equal to the velocity gained by the fluid in falling through the distance

th; — hz) under the action of gravity.

Suppose we have a large tank with two small orifices, one at the top and the other at the bottom.
Applying Bernoulli’s equation,

1. 1 o . ‘ ‘
or P+ = pv, +pgh, =P, + Epv; +pgh, [v, 2>V, soignoring top velocity v, ]

I,
or P +pgh =P, +Epv5 +pgh, or =v,=.2¢g(h -h,) [P, =P,]
Venturi Relation
Applyving Bernoulli’s equation to Venturi meter,

| 1 ., .
or P,+;p\',‘+pgh| =P2-s-5pv§+pgh2 [A, €A =v, £v, & h =h,]

or P-P= %pvi . called Venturi relation.

Relation between Speed & Pressure
Suppose water is flowing through a pipe having different area of cross sections at two points A & B.
then applying Bernoulli’s equation

1, 1,
or P, 5PV +pgh, =P, 5PV +pghy  [pgh, =pghy]

1, L
=P, + Ep\-‘;\ =P+ Epv;,

It shows that. where the speed is high, the pressure will be low.
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SHM & Uniform Circular Motion

Consider, a point P moving along circular trajectory around the center O, with
angular speed .
The radius of the circle is x, , speed of the moving point P is

V= X, ® e (D) [v=rn]

To calculate time period T of P, we have

wn=— or tzg, 6 =2mrad
t ®

50 i 2

(0]

From the figure, the displacement x is

X =x,sn0 [0 =wt]
or X =X, sinot
From the figure, the speed v of the point P is $in” B +cos” B =1
v=v,sin(90° -0) = v, cos0 =x,mcos0 [v, =x, m] or cos’ 8 =1—sin’ 0

[ or cos®=+1-sin"0
v=x, 0y1-sin’ ‘g = X,0 1—*
& also we have
1 " . X
or v=x,0 |—(x —x') =20 Jxl —x* = fxl %’ sin@=—
) /x;(o XDJ J -

Now to calculate accelerafion a of the point P,
As P describes a constant angular speed o , N oscillates to and fro along the
diameter DE. As N move towards O, it speeds up, i.e., its acceleration is
directed towards O.

The magnitude of acceleration of the point P is

% 5 9 2

Vo X o 5 v
o g KW 2 = —_
=, Sl =X,0 laﬁ : & fo}(nc\)]

“e
X X

its component along DOE is
a=x,m sin0

since it is directed towards center and x =x_sin®,

SO 2
a=—0mXx

['hus the point N has acceleration proportional to displacement and directed
towards the center, which is the characteristic of SHM. So the projection of P
cxecutes SHM. We can define SHM as “the projection of uniform circular
motion upon any diameter of a circle”..
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A Horizontal Mass Spring System

Consider,
The vibrating mass attached to a spring
whose acceleration at any instant is given by

k F=-kx & F = ma
a=-—X = ma = -kx
m
also we have a=-0'x or a=——X

/ m
comparing the-above two equations, we get

k
w=,/—
m

so the time period of the mass attached to a spring is

7=28

2n m
or T= or = - | 1
m T=2m,| K ey

for instantaneous displacement taking the equation

X=XqsIn ot

or X=X, sin E t 0 (2)
m

for instantaneous velocity taking the equation

v=o4x] - x’

or
[k ’k 1 39 7 i( xzfle
or F= X X = [ — (X X)) = X —|
' m Fo m( ! ) °{m[ x’ JJ

o

k x?
or e el e (3)
m X,
L
putting x = () in the above equation to get maximum velocity v, , we have
o . O (4)
m

from equations (3) & (4), instantaneous velocity in terms of maximum velocity is

9

V=V, ]73{.-2. (5)

X

o
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Energy Conservation in SHM
To calculate potential energy, we have

F = kx ) F = kx _
1 1, Fain atx=01s F=k (0) = 0
PE. = W.donezlﬂw-xz—kxngkx“ & Frax atx =xis F =kx
2 0+kx 1
: so F = =Ekx
or RAEN= i—kXQ (6)

From the above equation we see that maximum PE will be at x =x, ., i.e.

or PE,_ =ikx’ e (D)

& the minimum PE willbe atx =10,

. 1P
PE. . 75k(0) or PE 0 e (8)

‘min

And kinetic energy will be

2
KE.=+mv =im X, 5(1—5;— =lmx§£ -X
2 2 mL X, 2 m X

or K.E.:—I—I{XZ l_x_z )
2 L X

o

The above equation shows that the maximum kinetic energy will be at x = 0,

1, 2
‘max :Ekx

So K.E o | . (10)

& minimum Kinetic energy will be atx =x, , so

KE :lkxi -2 :lkxi(l—l):ikXixﬂ
X: 2 2

‘min 2

or KE.,, =0 S (1)

Now calculating total energy at any displacement x will be
E’ln[xl\ Siulel, KE

2
= L+ lkx;(]—x—J = ey [lkxi—lksz
2 2 2 2 20T
= Ler Lpeslie o Lo (12)
2 2 % 2 o ElolaI:;kxu """

From equations (7), (10) & (12), we see
I'he energy oscillates back and forth between kinetic energy and potential
cnergy but total energy of the mass remains constant everywhere.




Simple Pendulum

Definition:
“A simple pendulum consists of a single. isolated particle suspended from a
frictionless support by a light, inextensible string”.

When a simple pendulum is disturbed from its mean position, it performs a
vibratory motion. '

To show
The motion of the bob is simple harmonic.

Let the bob is at position B during
its vibratory motion.
I'wo forces are acting on the bob.
i) Weight mg of the bob in vertically
downward direction.

ii) Tension T acting along the string.

mg is resolved into two components

Component of mg along the string = mg cos 0

Since there is no motion along the string, so

T = mgcos0
Componeént of mg perpendicular to the string = MESInG s (2)
We have
F=ma s (30

T'he component (mg sin 6) is responsible for the motion, directed towards the
mean position, so from equations (2) & (3), we get
ha =—1ngsin 0

3 S =r9
or a=-gsinf
) or x = (0

We suppose that angle 0 is very small, n

o sinl— @ or O = x/¢

S0 s N : Taylor’s series expansion for,

B a=gf = _g? sin(f}:(-)—g—#(i— ..........
3 sl
or dzf% X v (4)
or a o -% e (5)

Equation (5) show that the acceleration is proportional to the displacement
and directed towards the mean position, so the motion of the bob of simple
pendulum execute Simple Harmonic Motion.
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['o calculate time period of simple pendulum,
We have from general expression of SHM,

a=—02x : e (B)-
comparing equations (5) & (6), we get
wl=8
!

or m:\/% v ()

We have time period from general expression of SHM

121 (8
®
From equations (7) & (8), we get
27

T=

y /7
B |
or T= 21{\/% i (9

equation (9) shows that the time period T of simple pendulum,

i)  isindependent of the mass
ii)  depends upon the length ¢
iii) depends on the value of g

By determining T and ¢ we can accurately measure the value of g at certain place.

The most basic type of pendulum is the simple
pendulum. 1t oscillates back and forth in a single plane,
all the mass of the device can be considered to reside
entirely in the suspended object. The motion of
pendulums such as those in clocks closely
approximates the motion of a simple pendulum. A
spherical pendulum is not confined to a single plane,
and as a result its motion can be much more
complicated than the motion of a simple pendulum.

I'he principle of the pendulum was discovered by Italian physicist and astronomer Galileo,

who established that the period for the back-and-forth oscillation of a pendulum of a given
length remains the same, no matter how large its arc, or amplitude. (If the amplitude is too
large, however, the period of the pendulum is dependent on the amplitude.) This
phenomenon is called isochronism. Because of the role played by gravity, however, the
period of a pendulum is related to geographical location. For example, the period will be
ureater on a mountain than at sea level. Thus, the pendulum can be used to determine
accurately the local acceleration of gravity.
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Speed of Sound in Air

Sound: “The series of disturbance in matter to which the human ear is

sensitive”.

The speed of sound waves depends upon the density, p of the medium.
Also it depends upon the elasticity, E of the medium.

Following is

Newton’s formula for the velocity of sound in air.

“Speed of sound is directly proportional to
inversely proportional to the square root of

Mathematically, vﬁ\/ﬁ _ v (
o :

the square root of the elasticity and
the density of the medium”.

)

Newton assumed that sound waves travel through gases in such a condition that
there is no change in temperature (isothermal).

To prove:
Ilasticity of volume E is equal to pressure P.
Consider the volume V of the air at a pressure P

Isothermal Process:
The process in which the temperature
of the system remains constant.

For constant temperature, if we increase pressure from P to P + AP, the volume

will decrease from V to V - AV, we have fr
P] V| = P2 Vz
PV = (P +AP) (V - AV)

PV =PV - PAV + VAP — APAV
Neglecting APAV as APAV <<P & V,
PAV = VAP or

\'% AP stress
oA AV A\’{/\"/ © strain £
or P=E e (2)

from equations (1) & (2), we have

r (3)

p

or

we get

or

V=

There is difference of 16 % in the theoretic

om Boyle’s Law,

Boyle’s Law:

The volume of a given mass of a gas is inversely
proportional (o the pressure, if the lemperature is
kept constant.

PV = constant

P« or

v
Elasticity (E) :
‘The property of 2 material body to regain its original
condition, on the removal of deforming forces
Stress:
T'he distorting force per unit area set up inside
the body.
Strain:
The change produced in the dimensions of a
body under a system of forces.

al value of velocity of sound in air

determined from the above formula and the experimental value.

Laplace’s Correction

To account for the difference, Laplace pointed out that the compressions and
rarefactions occur so rapidly that heat of compressions remains confined to the

region where it is generated and does not h

ave time to flow to the neighbouring

cooler regions, which have undergone an expansion. So temperature of the
medium does not remain constant. In such case Boyles’s law takes the form

PV’ = Constant (4)




[f we increase pressure from P to P + AP, '
the volume will decrease from V to

V - AV, so we have

PV’ = (P+AP)(V = AV)'

(V-AV)V]'

or PV'=(P+AP
v amf =20V

or PV":(P+AP){1_—A‘—}} v

or P :(P+AP){1—£}
v

From Binomial theorem we get

I"-(_P+AP)[1—*{£—M(—4$ .......... )
V 1-2 A
lecting squares and higher powers

Neg

(

of (AV/V)as AV <<V, we get

AV
P=(P+AP (1;_)
) Ay

V
or P=P-PvA +AP—AP7£
\% vV
. AV
Neglecting AP*}IV as APAV <<P &V,
AP =Py Av
A%
or P AP _smesS L. (35)

TAV/ " Strain
A strain

From equations (1) & (5) we get

which is Laplace’s modified expression for
the speed of sound.

Adiabatic process:
Process in which no heat flows mto or out of the system
Specific heat at constant pressure, Cp
It is the amount of heat energy required to raise the
temperature of one mole of a gas through 1" K at
constant pressure
Specific heat at constant volume.Cy
It is the amount of heat energy required to raise the
temperature of one mole of a gas through 1"K at
constant volume.

) Cp
We define: v =

Cy

To prove: pv! = constant

If we have one mole of a gas, then for adiabatic
process, we have

Qr = nCyAT+P AV )]

For small change per unit volume.

dQ = CydT+PdV

for adiabatic change, we have

dQ = 0 = CydT+PdV

or CydT+PdV =0 (2)
Now we have for one mole,
PV=RT

Differentiating it. we get
PdV + VdP = RdT
PdV + VdP PdV + VdP
or dT = = (3)
R Cp-Cy

From equations (2) & (3), we have

PuY + VP
Cy — |+Pav =0
Cp-Cy

CyPdV + Cyy VdP + CpPdV = CyPdV = 0

or (?V\"dI‘ + (_ipi‘dV =0

Cp
or VdP+ ——PdV =10
Cv

put (%\’ =7y, so VdP +yPdV =0

Dividing throughout by PV.

Integrating, log P + v log V = constant

or log (PV) = constant

Taking antilog, PV’ = another constant
So PVT = constant

If we put the values in the above formula, the theoretical value agrees with the
experimental value. So Laplace’s correction is correct.

Effect of Pressure

As density is proportional to the pressure, so the speed of sound is not affected

by a variation in the pressure of a gas.
Effect of Density

At the same temperature, pressure & v, from equation-(6) we have

1 .
Ve \/t €.2. Poxygen — 16 x Phydrogen » SO Voxygen 18 4x Yhydrogen
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Effect of Temperature

vP
We have v= »® = v, = w & v, = fis
P Po P
.{Py
or L NP _ 1B (1)
% "fV P
7 D\J
B AV V-V,
We have VAT V.(-0)
V| :Vn{1+|3t) VYV
As coefficient of volume expansion, Cor B=—gr or BVt=Vi-V,
e 7l - . D
B= Yoz forall gases, or V=V, +BV,t or V,=V,(1+p0)

Vx :\f’(’(]‘f'L] p:E or \/v:E ‘
273 Vv P

P t

To=lv— ... 2

or . e (2)

from equations (1) & (2) we have
Moo e — e (3)

273

V‘\
R EXE T

or Yoo 2BEC_ LT e (@)
v. V213 4T,

i.e. speed of sound varies directly as the square root of absolute temperature.

From equation (3) we have

. Y Binomial Theorem:
Yo [1 - 7

ty?
- ., -(n=-2)
273J {1+:<)“=1+E->‘:+n(n )-x'+n(n Din )-x‘+
1 1-2 1-2:3

U ) s ex e Ty
Expanding R.H.S. by
applying Binomial theorem, we get

‘ (11 2
L: 1 +1XL+M(J_} +

v 2 273 1.2 273
Neglecting higher powers, we get

; t t
Yeols— or vV, =V, IJr—r-tw tvni’L [\«'[,:332 m s']:|
v, 546 ' 546 346

o

332xt

1 (\'D+
- 546

or v, =v, +0.61xt
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Stationary Waves in a Stretched String

To make %
General formulas for wavelength A and pK——;_H‘
frequency f of transverse stationary waves. % &
Consider a string of length ¢ which is kept ; z

stretched at two ends so that tension in string is T.

In tig. (b), string is plucked at the middle, the string vibrates in one loop, with a
frequency, say f) , so

Fig.(a)

or A =2 v="£,x2¢ : 4=
28 N Fig.(b)
o e = 2
or A T (1 £y i (2)

In fig. (¢), string is plucked from one quarter, then it vibrates in two loops, with
a frequency, say 5 , so
(=%, and v=~fk, =£(

. N2 Nz N
or ¥s=% ; Hor=2 P = o

o 2¢ S
2/ . Fig.(c) = A

In fig. (d), string is plucked in such a way that it vibrates in three loops, with a
frequency, say fj, so

3 2 = A
9 A - P -
I:Erh_: and v:fq\qzij? 5 e ; N;_ NI°
p) i 2 A
or A= - G) , fi=3— =3f...(6) Figs(d) i
c3 ) 20
Generalizing equations (1), (3), (5) and (2), (4), (6) we get
or A, :Eé ..... (7) and f =nf.....(8)
n
Now if m’ is the total mass of the string,
tension F and ength.f then speed v is vV =vaxv
FX or v’ =v><£ S:VF
m ! v
‘ =Yt b
: : ~m t v
when m is mass per unit length = — , a=—
4 or v =ax{ t
5
SO V= E P {9) or vz _ Ix_/ F=ma
from equations (2) & (9) we get m or a=t
1 [F : Fx( m
fi=—y— ... (10) or v=

20\ m E m
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From equation (8) we see that the stationary waves have a discrete set of
frequencies f,, 2f, 3f,, ....nf; which is known as harmonic series. The
fundamental frequency f; corresponds to the first harmonic, f; corresponds to
second harmonic and so on. The stationary waves can be set up on the string
with the frequencies of harmonic series determined by the tension, length and
mass per unit length of the string.

Stationary Waves

1) Two waves of equal frequency traveling in opposite direction..

2) The resultant of two waves of the same wavelength, frequency and
amplitude traveling in opposite directions through the same medium.

3) Waves apparently standing still resulting from two similar wave trains
traveling in opposite directions.

Node: A point of no disturbance of a stationary wave.

Antinode: A point which oscillate with the maximum amplitude in

stationary waves.

Production of Nodes and Antinodes:

The points on the cord which do not oscillate at all are called nodes, and the

point which oscillate with the maximum amplitude are called antinodes. The

distance between two nodes or antinodes is always equal to ¥ A.

Reason of production:
Stationary waves are set up as a result of super-position of two exactly similar
waves moving along the same line but in opposite directions.

Condition for production:

The phenomenon of stationary waves takes place in any medium wherever its
particles are simultaneously agitated by two similar waves moving along the
same line in opposite directions.

Detection:

The presence of stationary waves in a medium can be easily detected by the fact
that the particles at the nodal points will be at rest and the particles at the
antinodes will be vibrating quite strongly.

Quantization of frequencies:
In any medium stationary waves of all frequencies cannot be set up. The waves
having a discrete set of frequencies only, can be set up in the medium.

Energy:

Energy in a wave moves because of the motion of the particles of the medium.
At nodes PE & KE alternates. At antinodes PE is stored for extreme positions
and KE for their equilibrium (mean) positions.




Stationary Waves in Air Columns

I—A pipe open at both ends K——A —T);XK*
From the fig. (a) we have Do ik o ot
Je— Ay >

f:% and v=1fA,

or A=20 , v=fx2f . '
a) ¥>_<*
26 v q“’( B= g
) =%

or Al=—]— ..... (1) ,or fi=—.....

In fig. (b), we have /=%, and v=fA,

or A=t , == P (k) :XT -
hy L =

vy . f n

In fig. (¢), we have {:’:%l3 and v=_[2, ?"6@) §£ 2 ; _\»:

28 v v : {-3 V
Ay =), Bm=3 =3 (6 =%A

or Ay 3 I A Y. f--e--(0) 28

Generalizing the equations (1), (3), (5) and (2), (4), (6) give,

or A, :Ec’ iy mnd st (B owherem =123, 45 v

n
n

II—A pipe closed at one end & open at the other
A

From the fig. (a), €:j and v="{A,
44 v :
S =—n 1 Jor £f=—._ .. 2 =A
OF 45 =3 () Lorf a7 @) £ Jz—
- 3 2
In fig. (b), £==%, and v=fA,
or ,=X &, E=2=Yx3..4 o
2—3 ...... N 2—l2—4£ 5 T ,623/4‘/‘1_
In fig. (c), ¢ =§k‘1 and v=f, N =
40 VooV il
[k Em— e 5) , Li=—=—x5..(6 il
Of % =enlB) . K, T (© Lr@\z
Generalizing the equations (1), (3), (5) and (2), (4), (6) give,
or i, 8 (7) and f = G 8y wheren=1,3,57, ........
n 4

Equation (8) shows that in the pipe closed at one end, only odd harmonics are
generated. And equation (8) of Section I show that the pipe, which is open at
both ends, is rich in harmonics.
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Beats

Definition: 1) The condition whereby two sound waves form an outburst of
sound followed by an interval of comparative silence.
2) The periodic alternations of sound between maximum and minimum loudness.

Explanation: If two sources of nearly equal frequencies are sounded at the same time,
then only a single note is heard. This note rises and falls in loudness alternately.

Ilustration: Consider two tuning forks, having frequencies 30 and 32, be
sounded together and placed upon a table. Suppose at a certain instant, at
t= "% seconds, fork A completes 16 vibrations
and fork B 15 vibrations. The right hand
prongs of both the forks just start moving
to the right sending out compressions. 8 V=30 by

These compressions arrive at the ear together

and a loud sound is heard. During this interval one beat is heard.

After t = % seconds, the fork A completes 24 vibrations and fork B 22 ¥
vibrations. Again compression from A and the rarefaction from B cancel each
other and no sound is heard. After t = [ second, the fork A completes 32
vibrations and fork B 30 vibrations. Both these forks will be sending
compressions and again a loud sound will be heard.

During this interval another beat is heard. So the total number of beats heard is 2,
which is also equal to the frequency difference of two forks.

::-}':TLHL aak,
Ay q

Conclusion: The number of beats per second is equal to the difference
between the frequencies of the tuning forks.

Displacement curves:

From the principle of superposition,
the resultant displacement of any
particle will be the sum of the
displacements due to each of the
two waves. The resultant wave
which is produced from two waves
A and B are shown in fig. The
variations of amplitude give

rise to variations of loudness which
is called beats.

Applications of Beats:

1. The phenomenon of beats is used in finding the unknown frequencies.
2. Itis used in tuning the musical instruments, e.g. pianos, organs.
3. Presence of dangerous gases in mines is sometimes detected by means of beats.

4. Itis also made use in the Heterodyne method of radio reception.
Heterodyne: Having altemating currents of two different frequencies that are combined to produce two new
frequencies the sum and difference of the original frequencies, either of which may be used in radio or TV receivers ]
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DOPPLER EFFECT

Statement
The change in the frequency of the waves caused b the relative motion of either
the source of waves or the observer.

Explanation
When an observer is standing on a railway platform the pitch (frequency heard)

of the whistle of an approaching locomotive is heard to be higher. But when the
same vehicle moves away, the pitch of the whistle becomes lower.

Hlustration
Consider this etfect under the following cases.
Case 0: Both source and the observer are stationary
Here the waves received by the observer in one second are

e

e
|. Observer is moving towards the stationary source
An observer A moves with velocity = u,
Then the relative velocity = v + u,

The number of waves received in one
second, £y will be i

As f, > f, therefore the frequency heard / observed by the observer will ncrease.

2. Observer is receding from the stationary source
An observer B moving away with velocity = u,
Then the relative velocity = v — u,

The number of waves received in one

second, T, will be i

Uo

As 1y < T, therefore the frequency heard / observed by the observer will be reduced.
3. Source is moving towards the stationary observer
The waves are compressed by an amount AX (Doppler shift).
As they are contained in a shorter space, there will be decrease in the
wavelength. So
The wavelength for observer C will be = e =4 — AL




A vooug V-l oy o
or ‘A“(; = - |=| ——= f=— ork=
f f f A f
v v \ & Ah= 4
or f,=—=——— or [ v f

¢ e (v-u fo= f
) | )

As fi > 1, therefore the frequency heard / observed by the observer will ncrease.

3.

Source is moving away from the stationary observer
The waves will an increase in the wavelength
for observer D=7p =4 + AL

VU V4 ug
or Ap=|=+—=|=|—— obsosnes
f { f wa‘{,

. / ‘(}C
Ur lb_%:("'*t‘%J ¥ @
or ‘f‘{.( v Jr
V—Ug

As T < 1, therefore the frequency heard / observed by the observer will be decreased.

Applications of Doppler’s effect

l.

]

(%)

wh

0.

Applied to light:
The frequency of light from certain stars is found to be slightly more and from other

stars slightly less than the frequency of the same light emitted from the source on
earth. Their velocities can be obtained from this frequency ditference.

Ultrasonic waves from a bat:
A bat determines the location and nature of objects by sending ultrasonic waves.

Reflection of radar waves:

The frequency of the reflected radar waves is decreased if the plane is
moving away and increased if it is approaching. From the observed
frequency difference the speed and direction of the plane can be calculated.

Detection of submarines:
When under-water sound waves (sonar) are reflected from a moving
submarine, we can detect its location.

Velocities of earth satellites:

These velocities are determined from the Doppler shift in the frequency of
their transmitted waves.

Radar speed trap:

Microwaves are emitted from a transmitter in short bursts. Each burst is
reflected off by any car in the path. By measuring Doppler shift, the speed
of car 1s calculated by computer program.

[Doppler shift: Apparent change in frequency due to relative motion of source and observer ]
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Young’s Double Slit Experiment

Interference:
“The phenomenon in which the two waves support each other at some points
and cancel at other”.

['o obtain interference of light waves, the following conditions must be

,1U]_ﬁlle'd' . . Phase coherence: Producing of two
i) The beams of light must be monochromatic. waves of same wavelength and time

i) The interfering beams must be phase coherent. | period at the same instant.

iii) Linear superposition should be applicable. Eliase: The phase ofa vibrating particle at
any instant is its state or condition as

regards its position and direction of

5 0 2 .
s e-sl iment gives the i .
YOUDg doubl gy g motion with respect to the mean position,

experimental evidence for Huygen’s wave Coherent sources: Sources which are
theory of light. emitting light waves continuously of the
. . i same wavelength, time period and

The expe“mental arrangement 1s shown amplitude. They must maintain a constant

in the figure. phase difference between them.
Monochromatic: Light consisting of only
one colour.
Superposition: Combining the
displacements of two or more wave
motions algebraically to produce a
resultant wave motion.
Principle of linear superposition: When
two waves act upon a body imultaneously
thev pass each other without disturbing
each other, and act upon the particles of
the quite independent of each other, and

1)

A screen A with slit S, is placed in front of a resultant of all individual waves.
monochromatic source of light.
The wave fronts emerge on the other side of screen A. These wave fronts
arrive at screen B, which has two slits S; and S,. These two slits behave as
coherent sources. These wave fronts produce interference. The resulting
interference pattern is obtained on the screen, consisting of alternate bright and
dark parallel bands called fringes.
1o derive
I'he equation for maxima and minima,
looking in the figure.
Considera point P on one side of the
central point O on the screen. AP and BP
are the paths of the rays reaching P.
The path difference is

AS = BP — AP =BD e (D)
The separation between the centers of the
two slitsis  AB=d
Distance of the screen from the slits is CO=L
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AD is drawn perpendicular to BP. Constructive interference:
Since L >>d. so AP =DP The interference of two waves, so that they
’ reinforce one another. Its condition is
Path difference = AS =m A
Destructive interference:

For P to be bright fringe,’i.e.,
for constructive interference,

BD=AS =mi,m=0,1,2,.... The interference of two waves, so that they
since'BD = d sin 9* ‘cancel one another. Its condition is:
5 1
So dsin® =mi , ... (2) AS:(erEj A
And for dark fringes,
. | . )
dsin® =(m *;] Ao m=0123.... |*Angle 0 between any two lines is
- equal to the angle between their

Now from the figure, .
perpendiculars.

mne:% or y=Ltan©

. Since y<< L so OC = PC
or-y = L.Sme or tan0= sin 0
(rom equation (2), we have
sinf=m=
d
. X g
50 y:mi e (3) or A=2- e (4)
d mL
from equation (4), we can calculate A.

Equation (3) is: Position of m" bright fringe = y, =m ’:jL

m

And for (m + 1)th bright fringe: y, :(m+l)%
And fringe width = Ay=y, -y, =(m+1) ?LdL -m AdL
or Ays= e (5)
d

['rom the above equation, the wavelength A can be determined, if other factors
are known.

Also equation (5) shows that fringe spacing increases if red light (long
wavelength) is used instead of blue light (short wavelength).

P EE A EEEE NS NN NN EEEEE NN EE NN NN NN NN NN NN NN NN N NN NN EEEEEE]

Young summed up his work, in 1807, “the middle of the pattern is always light, and the bright stripes on each
side are at such distances that the light coming to them from one of the apertures must have passed through a
longer space than that which comes from the other by an interval which is equal to the breadth of one. two.
three, or more of the wavelengths. ™ .

The trouble with this understanding of light emerged at the beginning of the 20th century, when Max Planck
and then Albert Einstein showed that light could be treated—as if it were a stream of little particles.

'he way particles pass through two holes in a wall is very different, in the everyday commonsense world, from
the way waves behave. If you stood on one side of a wall in which there were two holes, and threw stones (or
tennis balls) in the general direction of the wall, some would go through each of the holes. You certainly
would not get these balls, or rocks, halfway between the two holes in the wall.

I'he discovery that light can behave like a wave or like a particle is an example of wave-particle duality.
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" Michelson’s Interferometer

Definition:
Vichelson's interferometer is an instrument that can be used to measure
distance with extremely high precision.

Explanation:

Device includes one half silvered mirror and two plane mirrors, using
interference of light waves to measure very small distances.

[t splits a light beam into parts and then recombines them to form an
interference pattern. It is used for accurate measurement of wavelength.

Experimental arrangement:

In the figure, monochromatic beam of
light is $plit into two rays through
half silvered mirror Gy. One ray is reflected

towards M, and second ray is transmitted

through G, towards mirror M,. ‘
After reflecting from mirrors M; and M,, " . 'Bource
the two rays recombine to produce interference,

seen through a telescope by an observer.

I'he glass plate G is placed to compensate

the path length. ' .

In practical interferometer, the mirror M, can be moved along the direction
perpendicular to its surface by means of a precision screw. If M, is displaced
through a distance of A/4, the path difference changes by /2. Then destructive
interference giving rise a dark fringe. When M, is moved further A/4, the total
distance covered is A, a bright fringe will appear. Thus we see successive bright
and dark fringes, as the mirror M; moved a distance /4.
A fringe is shifted, each time the mirror is displaced through A/2. Hence
counting the number m of the fringes, which are shifted by the displacement L.
of the mirror, we can write the equation,

L=m &

2

['his interference is used to make very accurate measurements.

Michelson measured the length of standard meter in terms of the wavelength of
red cadmium light and showed that the standard meter was equivalent to
1,553,163.5 wavelengths of this light.




Simple Microscope

Definitions
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Simple Microscope: An ordinary convex lens held close to the eye is called

simple microscope or magnifving glass.

Least distance of distinct vision (d): The minimum distance from the eye
(equal to 25 em) for a normal person at which an object appears to be distinct.

Magnifying Power (or Angular Magnification) M:
The ratio of the angles subtended by the image as seen through the optical
device to that subtended by the object at the unaided eye.

Mathematically, M= B
o
'rom the figures we have, '
Object size 0
tant =gt =—mmm=—  .....
! Object distance d
Imagesize 1 1
Image distance q d
We have from equations (1), (2) & (3)

& wnp=p=

o
M=<% _ _
% 0

'(I T4
$=A V b’

[n figure (b), as the two triangles are similar, so the ratio of the corresponding

sides should be equal, ‘

I d
=2t e (5
O p ( )
'rom equations (4) & (5) we have
m=4 o (6)
oo P
Now from the lens formula, [image is virtual]
11 1 11
—m—te—=—m e [q=d] b (7)

f p —q p d
Multiplying both side of eq.(7) by d and
simplifying will give

d_d d_d 1
f p d p
i d :
or S=i+ - . (8) [pis=>Pupil
p f Y=

From equations (6) & (8) we get
M:n% e (9)

Taylor’s series for.

sine:()f—+e%f ........
31 5!
N4
uosB:lﬁ)—+U—— ........
14l
for small 0,
sinf=0 & cosO=1
S0 tanl:)zsm{_)=()
__cosH

Aqueous humour
(n=1.336)

Vitreous humour
(n=1.336)

Optic nerve

I'he above equation shows that magnifying power of a magnifying glass is
inversely proportional to f. Lesser the focal length, greater will be its

magnification.
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Compound Microscope

Compound Microscope is a device used to produce a very large magnification
of very small objects. It consists of an objective and an eyepiece.

Construction:

[t consists of two convex lenses, an object lens of very short focal length and an
eyepiece of comparatively longer focal length. The ray diagram of a compound
microscope is given in the figure.

Working:
The object AB of height h forms a real, of k‘/\ AR /}, %
B e (0] sl hl/%o,J =

object placed within focal length of eyepiece.
The eyepiece is used as a magnifying glass
to see the final image h, at least distance 7 )
of distinct vision, d. It is virtual and very 1=
much enlarged.

eye piece

B
inverted and enlarged image h, of the I Vs \j/

Magnifying Power:
We define:

angle formed by final image

Magnitying power. = -
angle formed by unadided eye
h
ftanp tanO, % h,
or =0 nd o or M= VAR
o tanc  tan A
multiplying and dividing by h, , we have
.
Mool B b e, oy [PRom, & R
h h, h h o h h, .
Now in the figure, triangles A;OB; and AOB are similar, so
AB _BO T A._E’n:h_.:M]:g e (2)
AB  BO AB  h p

which is the magnification produced by the objective.
Now magnification produced by the eyepiece,

M.=h—z=1+,i e (3) {M=l+g}
h, L f
p
so from equations (1), (2) & (3) we have M=3 Ll +fi] . £ <t
P (]

usually the object h lies very close to the focal length f, , so it = D
and image h, lies very close to the eyepiece and image distance q is
approximately equal to length L of microscope tube, so q = L

IL d

IHence, we get M = f—{l +f—} 5 IRSIE

which is required formula for magnification of compound microscope. We see
that for high magnification the objective and eyepi:ce should be of short focal
length. However f, <f, .
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Astronomical Telescope

Definition:
It is a telescope used to see heavenly bodies, it consists of two convex lenses,
one for abjective and the other as an eyepicce.

Details:
To see distant objects (e.g. distant galaxies)

more amount of light is needed. So objective L .
lens used in a telescope is of large focal length %_—_M

with large aperture. It is a convex lens. :ﬁ\ Q/ -
I'he eyepiece is also a convex lens. It has short s 2 S ES i, %
focal length and small aperture. The objective _ =

is mounted at one end of a tube and eyepiece is

mounted in a small tube to slide inside the
bigger tube of the objective.

Working:
The objective form a real, inverted and diminished 1mage at its focus B’ of'a
distant object, in front of eyepiece.
The distance between the eyepiece and this image is adjusted within the focal
length so that a magnified and virtual image is formed at the least distance of
distinct vision. If the image A’ B’ is made at the focus of eyepiece then the final
image is formed at infinity. It is called the telescope is focused for infinity.
Then, Length of'the telescope =f, + f;

where [, = focal length of objective & f, = focal length of eyepiece.
Here the final image is formed inverted, which makes no difference for
astronomical purposes.

Magnifying power:

Definition: /t is the ratio of the angle formed by the image at the eye as seen

through the telescope to the angle formed by the obiect with unaided eye, the

object and image both lving at infinity.

Mathematically M = B
o

Now for small angles,

e Taylor’s series for,
=tano = oS
oo B'O sin(—)=07?—r+%— ........
mt S 5
& [3=lanB=A,E_g, o @
B'O B cosO=1-T—+——....
from equations  we get _ 2t 4t
ey for small ©.
JfOAB sinB=0 & cosB=1
M= A’lii’ /= AR : : s o
/F f. AB so tan@=——=0
¢ cos0
or M =i—‘ . fo<f,
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Optical Fibres

Definitions

Fibre opties: The use of fine transparent fibres to transmit light. The light
passes along the fibres by a series of internal reflections.

Optical fibre: An optical fibre consists of a single flexible rod of high
refractive index, less than 1mm in diameter, having polished surfaces coated
with transparent material of lower refractive index.

Photo phone: An instrument for talking along a beam of light instead of
telegraph wire; telephoning without wires by varying the intensity of a beam of
light by the action of voice, and allowing the light to fall upon a piece of
crystalline selenium.

Bandwidth: The upper and lower range of frequencies over which a particular
characteristic of an electronic device lies within specified limits.

Core: The central part of a wire.

Cladding® A layer of lower refractive index (less intensity) over the central
core of high refractive index (high density).

Mode: The method by which light is propagated within the fibre.

Repeater: A device used to amplify or regenerate signals in order to extend the
transmission between two stations.

Fibre Optic Principles
Propagation of light in an optical fibre requires that the light should be totally
confined within the fibre. This can be dotie by two phenomena.

1. Total Internal Reflection

I'he reflection of light at the boundary of two transparent media when the angle
of incidence is greater than the critical angle.

Refractive index is a measure of the extent to which a ray of light is bent as it
passes from one transparent medium to another.

2. Continuous Refraction

Continuous bending of a wave disturbance at it passes obliquely from one
medium into another of different density.

Optical fibres consist of i) glass core, i) glass cladding, & iii) jacket
Tvpes of Optical Fibres

They are classified on the basis of the mode by which they propagate light.
Such as, single- or multi-mode fibre, stepped- or graded index fibre

Step-index fibre: Here indexes of both cladding and core are constant throughout.
Graded index fibre: In it the refractive index of the core decreases
radially outwards. Light rays then spiral smoothly around the central axis
rather than zig zagging.

Single mode fibre: Here the core is very narrow relative to the cladding and
rays travel parallel to the central axis; it may be stepped or graded index.




There are the following three types of optical fibres which are classified on the
basis of mode by which they propagate light.

Il
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3.

Single (or mono) Mode Index Fibre
Definition:
An optical fibre having a very thin core of about 5 pumn diameter and has a
relatively larger cladding of glass or plastic.
Core diameter: 5 um
Light source: Laser light
Capacity: It can carry 14 TV channels or 14000 phone calls.

Multimode Step Index Fibre
Definition:
An optical fibre having a core of relatively larger diameter such as 50 pm is
used. The fibre core has a constant refractive index such as 1.52.
Corediameter: 50 pm
Light source: White light
Useful: For short distance only

Multimode Graded Index Fibre

Definition:

An optical fibre in which the central core has high refractive index which
gradually decreases towards its periphery.

There is no noticeable boundary between core and cladding.

Core diameter: 50to 1000 um

Light source: White light

Useful: For long distance applicatigns

Applications

l.

()

hn

Transmission to inaccessible place:
Optical fibres are used to transmit light around corners and could be viewed
unobservable places.

. In medicine:

Optical fibers are widely used in medical instruments for viewing inside the human
body, for laser surgery and in the diagnostic, e.g. in the bore of a dentist's drill.

. To transmit images:

Image transmission by optical fibers is used in facsimile systems, in
phototypesetting, in computer graphics,

. In telecommunications:

Optical fibres have ability to transmit thousands of telephone conversations, several
television programs and numerous data signals with large bandwidth between stations.

. In sensing devices:

Itis used in a wide variety of sensing devices, ranging from thermometers to gyroscopes.

1 . v
[ Gvroscope: A wheel or disc mounted so that it can spin rapidly about an axis which itself can

rotate about either of two other axes perpendicular to it and to each other. |
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Signal Transmission & Conversion to Sound:
A fibre optic communication system consists of three major components.

e : 5 -.- ™ .. i L
Sound = Light > > | Protodode[— 2= Sound
Transmitter P Receiver

i) Transmitter
A device used in a telecommunication system to generate and propagate an
electrical signal. This portion convert electrical signals to light signals.

ii) Optical Fibre

An optical fibre consists of a single flexible rod having polished surfaces
coated with transparent material.

FFrom the transmitter side , semiconductor laser or LED made digital
modulation to move down the fibre.

Repeaters are used to regenerate dim signals nearly with a span of 100 km.

iii) Receiver
At the receiver side a photodiode converts light signals, then amplified and
decoded. '

Losses of Power: :
When a light signal travels along fibres, there is power loss due to the following:

Factors:

i) Scattering

The spreading out of a beam of radiation as it passes through matter, reducing
the energy moving in the original direction.

ii) Absorption

In radiation, reduction in the intensity of electromagnetic radiation, or other
tonizing radiation, on passage through a medium.

iii) Dispersion .

The separation of white light into its component colours.

Results:
Faulty & distorted signals are received.

Remedies:
Use graded index fibre instead step index fibre.

Efficiency:
Time difference is reduced by | ns per km (by using graded index fibre),
instead of 33 ns per km length of fibre (if used step index fibre).




Kinetic Theory of Gases

The kinetic-molecular theory of gases is based on the following main
assumptions first stated by Clausius.

1. A chemically uniform gas consists of very small identical molecules.
The molecules are constantly in random motion, moving in all directions
with all possible velocities.
3. The molecules behave like smooth elastic spheres.
The energy of the gas is all kinetic.
5. The time spent in a collision is negligible as compared with that
during which the molecules are moving independently.
6. Between collisions the molecules move in a straight line with uniform velocity.
7. The molecular radii are assumed to be negligibly small as compared
with the mean free path.
8. Average kinetic energy of gas molecules is proportional to absolute temperature.

o

g=

Pressure of Gas

Consider a cubical container of side /
Area of one side = A , aY

& Volume= (A= x('=(=V et

et a molecule is moving along X-direction,

Its velocity will be = v

Time interval = t

Distance traveled = v t

Distance traveled between

e T —

Ry

0o . .. I
two consecutive collisions =27 /
[S=vi& t=S/] z
[ime for one collision= 2¢ /v, w1

Momentum of the molecule before collision= m v i,
Momentum of the molecule after collision=-mv |,
['he change in momentum of the molecule=-mv |, -(mv,)

=-2mv,, e (2)
= = —2]]’1\/ -mv, XV I}l‘r’}
rate of change of momentum = 57 I = ‘; = f"- -.(3)
ATVI‘ ‘ ‘
Now we have
m(v, -v,) .
Force = F |, =m a =———"* = Rate of change of momentum .....(4)
t
- *lTlfo

from equations (3) & (4) we get F, = ;

Where F, is the force exerted by the wall on a molecule
So force exerted on the wall by a molecule is
—mv,, or Fe mv, (5)

-F,=—% o F=—1&
' 4 {
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And total force exerted on right wall by all the molecules, F, , will be

Comv, omvi omvi mvi,
E = e e rTUO +—
( { ' {
or F=13vi .. (6) e
¢ ) density =
So pressure Py on the wall will be volume
;- m
x e . ’ or p=—
p=f_ /07 My Pype o . (7 e
A A=) N for n molecules
or P=LN<vli> = pav?s (9 P oD
N I F N
We have
> =t >+ > + <>
’ We define:
as particle is moving in random direction so Mean square velocity < v, >
g 2 2
s memav e = (B afs (10 oyl = St Ve buiat iy
N % N
50 Po=d a¥’Sian( [1) ) 5y
. 3 or <v;> = —1
From Pascal’s Law N
P or Zv;, =N<v:> ...(8)
P =P =P ==<v >
3
[ L 1 . mN - . mN  mN
n general form, P=—p<v'> = —<v > =
‘* 3" 3V &V
2 ; 2 A
or P==—<-—mv’> = =N, <—mv’>...(12) )
3 3 N - No. of molecules N
or P 7= .const. <K.E.> ¢ Volume Y
or P ee<kK.E:

Pascal’s law: Pressure applied at
any point of a gas/fluid at rest is
transmitted without loss to all

Interpretation of Temperature other parts of the gas/fluid.

We have from previous knowledge

PV = nRT i
or B iREA we(13) [T VR _f‘ W el
from equations (12) and (13), we have So Vea—
s P
nRT 2N | 5 2
=:*<;mv > or PVl
v 3V 2 or PV = RT
or =[2-—J<lmv <5 For n moles
3nR 2 PV = nRT
. 1 4
or T=const. x <—mv >
2
or Tec <%m\»’: > or or Te(KE),
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Derivation of Gas Laws

We have from previous knowledge,

or P:E§<lmvj> (1)

If average KE =<1/2 mv® > is constant, then

1
P:("(mst.x%E or PV=C01151.><%N=C0nstam orP =« — ... (2)
3V 3 \Y

which is Boyles’s Law.
Now from eq. (1)
vt N L e (3)
3P
If pressure P is constant, then
V = constantx <172 mv>> or Vo (KE),
As (KE).; 1s measure of Temperature T, so

V « T e (&)
which is Charles’ Law.

Internal energy (AU)

i) The sum of all forms of molecular energies (kinetic and potential) of a substance.
11) Total heat energy retained by the system in the form of potential energy and
kinetic energy. B
Internal energy retained is in the form of,
i) translational kinetic energy (KE s ), 11) vibrational kinetic energy (KE,;, )
& iii) rotational kinetic energy (KE,y )
Generally internal energy of an ideal gas system is its translational K.E.

Internal energy depends only upon initial and final states,
Internal ehiergy is a function of state (state variable or parameter like P, V & T)

Specific heat: The amount of heat energy required to raise the temperature of
unit mass through one degree.

Molar specific heat: The amount of heat energy required to raise the
temperature of one mole of a substance through 1 K.

Molar specific heat at constant volume (C,): The amount of heat energy
required to raise the temperature of one mole of a gas through 1 K at constant volume.
Molar specific heat at constant pressure (C,): The amount of heat energy
required to raise the temperature of one mole of'a gas through 1 K at constant pressure.

Work & Heat

Heat Q ADDED or heat IN is +ve

Heat Q LEAVES or OUT is -ve

Work is done BY the system on its environment is +ve
Work is done ON the system by the environment is -ve




50

"First Law of Thermodynamics

Statement
i) In any thermodynamic process, when heat Q is added to a system, this

energy appears as an increase in the internal energy AU stored in the system
plus the work W done by the system on its surroundings.
i1) The heat energy supplied to a system is equal to the increase in the internal
energy of the system from an initial value U, to the {inal value Uy plus the work
done by the system on its surroundings. -Mathematically

Q=AU+W (1)
Explanation
Eq. (1) defines the change in the internal energy of a system. It is equal to the
energy flowing in as heat energy minus the energy flowing out as work.
The first law of thermodynamics indicates that there exists a useful state
variable of every thermodynamic system called the internal energy.

Applications:

| Isobaric Process:
“The process in which the pressure of the system remains constant™.

Gas-cylinder system P-V diagram
‘_&1 B 4 _ %D'bM?BVLiTL)
gl
V—>

Applying the equation in this isobaric process:
o008 0 . Work = force x displacement
Q=AU + W W =Fxd [P=FA

or Q=AU + PV or W=PAd [or F =PA
o W=PV [Axd=V

2. Isochoric Process:
“The process in which the volume of the system remains constant”.

The System P-V diagram
: Vv, T,
277 A * h"" B
b Yoeht
Jl k’ rl V) 7;
Applying the equation, - V—>
[ W =0

Q=AU+ W
or Q = AU




3. Isothermal Process:

“The process in which the temperature of the system remains constant”.

The System P-V diagram
/';e-}f///// (P”v“’;}
;7 i&g#“ﬂh
(bov,T)
/ Heat m\/m\
' v
We have for constant temperature, -
.. PV,=PV, & AU=0
Applying the equation,
Q=4aU+ W AU = 0
or Q=W

4. Adiabatic Process:
“The process in which no heat enters or leaves the system”.

The System P-V diagram
T .
/] lllll'llllll" 4 (PI'VV ')
/ /
/ ¢ b Adiabat
/) 5
/ /
7 /
2 Vi {’ Pz.)v,_; I‘I..)
TITTTT77 7772
V —
Applying the equation,
=AU + W
Q / [e=0
0 =AU+ W
or W - AU
Also in adiabatic changes the following relation is found to be true,
P V¥ = constant where vy = C, /Cy
[ Proof of above equation is in the foot note of the article “Speed of Sound in Air”
Examples:
1) Rapid air escape when tyre bursts
5

2) Rapid expansion & compression of sound waves
3) Cloud formation in atmosphere
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5. Molar Specific Heats of a Gas
We have from previous knowledge
Q = mcAT
for molecular specific heat
Q = nCAT

Il ITTT77 7777

PPRIITFZZIZFF e

At constant volume:

: | Heat energy used in raising
Q=nC AT = v L)
the temperature through AT
Heat energy used in
) ok SmReD | AW = PAd=PAV =nRAT ... (2)
| doing the external work

At constant pressure:

Heat energy used in raising Heat energy used in
(‘):nC].A'l..:-»{ =l = }+{ R Nse } (3)

the temperature through AT doing the external work

[rom equations (1), (2) & (3), we get

nC, AT = nCy AT + nRAT

or nC, AT = #C AT + URAT
or G, =Gy + R
or Gy~ Cy = R

It implies Ci = Oy




Second Law of Thermodynamics

Definitions:

Reversible Cyele: A succession of events which bring the system back to its
initial condition and all the changes are reversible.

Reversible process: If the process can be reversed in such a way that the
system and its surroundings are both brought back to their original states, then
the process is said to be reversible. -

Irreversible process: If a process can not be retraced in the backward direction
by reversing the controlling factors, it is an irreversible process.

Heat engine: A device which converts heat energy into mechanical work.
Carnot engine: An ideal heat engine, free from all the imperfections of actual
engines, and hence never realized in practice.

Carnot cycle: A cycle in which reversible process.occurs.

Heat reservoir : It is supposed to be so big that its temperature remains
constant even if some heat enters or leaves the reservoir.

Hot reservoir (or Source):

A hot body, which can supply heat at

a high temp. to a cold body. o X
Cold reservoir (or Sink): 2l N
A cold body, which can receive heat at A I
a low temperature from a hot-body. vk

A Heat Engine must have:
i} A source, which can supply heat.
ii) Sink to reject heat.
iii) Working substance.

Lord Kelvin’s Statement

“It is impossible to devise a process which may convert heat, extracted from a
single reservoir, entirely into work without leaving any change in the working
system”.

As a consequence of this law, two bodies at different temperatures are essential
for the conversion of heat into work. A single heat reservoir, no matter how
much energy it contains, can not be made to perform any work.

Clausius Statement

“It is impossible to cause heat to flow from a cold body to a hot body without
the expenditure of energy”.
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Carnot Engine

Sadi Carnot described an ideal engine using only isothermal and adiabatic
processes. He showed that this is most efficient reversible ideal engine. A Carnot
cycle using an ideal gas is shown on PV diagram. It consists of four steps.

I. The gas is allowed to expand isothermally
at temperature T, absorbing heat Q,
from hot reservoir.
2. The gas is then allowed to expand adiabatically
until its temperature drops to Ts. T
. The gas is compressed isothermally at temp. "
T, , rejecting heat Q, to cold reservoir.
4. Finally the gas is compressed adiabatically
to restore its initial state at temperature T.

(%)

0

The net work done during one cycle equals to the area enclosed by the path
ABCDA of the PV diagram.

Since working substance returns

Applying 1" law of thermodynamics, Lo initial state ,
Q = AU +.W so AU =0
o Q-0 =0+ W Net heat absorbed during one cycle
or W:_Qlin is, Q=Q-Q

Now efficiency 1 will be
_ Output _ Q, -Q, 7&_()_1

" Input Q, Q Q
or 1]:1,&

Q

since Q =T, so r[:l+_1]—_f
1

Output =Work =W =0Q, - Q,
Input = Energy = Q,

& Percentage efficiency, % age 1= {H%] 100
|
I'he above equation shows that the efficiéncy of Carnot engine depends on the
temperature of hot and cold reservoirs. It is independent of the nature of
working substance. It can never be 100 % unless cold reservoir is at absolute
zero temperature. Such reservoirs are not available and hence the maximum
cfficiency even for Carnot engine is less than one or 100 %. And all real heat
engines arg less efficient than Carnot engine due to friction and other heat losses.

Carnot’s Theorem:
No heat engine can be more efficient than a Carnot engine operating between
the same two temperatires.

Extension of Carnot’s Theorem:

11l Carnot’'s engines operating between the same two lemperatures have the
same efficiency, irrespective of the nature of working substance.
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