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INTRODUCTION

The vital portion of your Text book of Physics for class
XI is included in this book of ‘Important Articles’.

Here no attempt is made to write extra information or
high knowledge to impress students. Articles are written
in brief, no details, but to the point, hoping you will
not miss the main points in your exam papers.

Foot notes and side notes are not for reproducing in the
exams. They are written just for understanding the
related article.

Text and figures are made in such a way so that you can
reproduce easily in the exams. Thirty one (31) articles
have been included for your study.

If you stuck! Just prepare this book, to go through your
exams.

Best of luck. C i
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1- OF TORS CTANG COMPONENTS

We will devise a formula for addition of more than two vectors,
starting from geometrical work to trigonometric.

Consider two vectors, i

_Abj_ = -‘O-ﬁ ¥
—_—
5 - & |
or A = A + A t
1 2 ) LD e
We heve done some geometrical work, A A Ay T
such as, —> g 6. A, Fu
= m e PR Al 1 1
2 6, Y-y !
N g e
Au )/ AT and RS are perpendicular L ox, o Al T
to Ox 4, so that PUIS is parallelogram, :
bae ot o .
PU = TS = A Big. (1)
2x
PT = US = A.Ly
and o
OT = &y
RU = AQY
Alse o b —
OT .+ IS .= 0§
or Alx - Azx = AX sosee {l}
and il B
S0 4R SR
A i = A esese 2
or iy 2y y (2) -
Equations (1) & (2) can be written as A 2
Ay T Alx 5 A2x sesee(3) / I// Ay
= A+ A ceves(4) B
4 1y 2y "
From fig.2, taking the case of n vectors, hd !
Yo% T e 2,
Kiv By Agy seee ,, Making angles 5 i
e L i : i
6‘1. &2| 1 6;1 with x-axis Fig.(Z)
respectively.
Generalazing the equation (3), we get As i F Acostr
A = A + A + A + L B + A SD £
X 1x 2x 3x nx Alx = Alcwﬁl

= 2o + 2 Eal T
or AcosG Alcos&l Azcosez Ancos&n




&

£ ;
or A cosB = 4,,Ar°°5°} = AL eseees (5)

Similarly generalizing eq,(4), we get

A = A + A TR g

Y ly. 2y Gy ' ny .

. s : A, = A sin0

= * =+ +
or A sin€ Alsinei Azslnﬁé cee AnSLnGB 1 1 1
g g A (6)
or A sin& = A sin = ssoe

t=) T r Y

Squaring and then adding egs. (5) & (6), we get

AZCOSQG' + A2sin2£r = Ai + As
2 2
or A (sine + cos29-} = Ai + Aﬁ
ok &S = A)z( + AYZ [Siﬂzs"f cosz& = 1
2 2
- + Es s
or |A JAX A (7)
A 5
& tan © z—ﬁx" sesass (B)
X

Therefore to determine the resultant of vectors,

i) Find x- and y~-components of vectors,
ii) Add all the x-components to determine resultant Ax'
iii) Add all the y-components to determine resultant AY'

iv) From eqs. (7) & (8), find the magnitude and direction
of the resultant vector.
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2~ MULTIPLICATION OF TWO VECTORS

We define
Scala duct T ct):

-
"The scalar or dot product of vectors R and B is the
scalar quantity obtained by multiglying the product of the magnitudes
of the vectors by the cosine of the angle between them".

Mathematically’ ZQE = )K”gfcos & sssse e (l)

-
The two vectors A and 'ﬁ are °
shown in the figure. And

SU 1is perpendicular to OP
& RP is perpendicular to OQ

such that

-5 —>
magnitude of the component of B along A....(2)

ey —
" " [} " A n Beeaald)

os
& OR

0w
» w
0O 0
o ©
o W
¢ Q
T

= AB cos & snnees (4)
= BA cos & = AB cos & ceniis (D)

therefore ., i
A.B =  B.A cscses (6)

From eqs. (2) to (6) we conclude that the scalar product of twe
vectors is the product of the modulus of either vector and the
magnitude of the component of the other along the direction of
the first vector.

Now we have _,
A

(953

esees (7)

X z

> LR

A +Ay+I\
—ng B B

=y o’

- i+
X Y z

[E5]

essse (8}

(&

then

il

— o ~ ~ " £
S S .
A.B (AL + A Azﬁ) (B3 + B3 *: Bk ) .

non oA ”~ ~ Aa
A Bidi + ABildj + ABdk FTABJ.i4tAB I
X x Xy X2 Y x Yy

H

+hBYE o+ ABEL f AR
Y z X zZy

~ A "
AB 4 4 i l.j =j-§ = kel = 0
S AYBY AZBZ tees (9} I‘\ A AA ~ o~ .—-?(9\)

N
Foy

—
Yol A.B

"

. s > 1.1 =J.) =k.k =1
From eq.(9) we see that the scalar product of two vectors is
equal to the sum of the products of their corresponding components.
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CHARACTERISTICS OF SCALAR PRODUCT
i) From eq.(6) we see that scalar product is commutative,
i i
el Ro_é. = goA
_ - —3
ii) From A.B = 0 , we conclude that
i
a) either of the two vectors A or B is null vector
or b) the vectors are mutually perpendicular, such as

=
A.B = AB cos 90° = 0
iii) For the vectors A and B are parallel or antiparallel
A.B° = ABcos 0° = AB
& R.B = AB cos 180° = -AB

iv) The scalar product obeys associative law, i.e.
- - -3 - -
(MA)«(nB) = mnAsE = A.mmB ..... (10)

v) The scalar preduct is distributive with respect to addition,

ieai — = -2 - - =3

AQ(B + C) = A.B + A.C
to prove, we have from - ege.
R.B = AB cos 0= A(B cos 8)...(11)
In the fig., we have

Op = Bcos & ....(12) [:“-ee egs.(2) & (3)
Ppqg = C cos & ...s (13)
Og = (B+ CJcos €&  eevue (14}

And

Oq. = ep +. pg
multiplying both sides by A,

A(Ogq) = A(Op) + Alpg) +ses (15) j P L ¢ o

0
From eqgs. (12) te (15) we get
A(B + Clcos & = AB cos & + AC ces € ....(16)
From the definition of dot product, we get
AR+ 0 = A.B +ORGC s UL T

which is the distributive law.

Product of force and displacement which is work. It is
a scalar quantity, i.e., Sl
Work = F.S = ES cos B ....(18)




%= VECTOR PRODUCT

We define

Vector Product (or Cross Product):

* The vector product of two vectors R and B is defined
to be a vector such that;

i) its magnitude is AB sin &, ®being the angle between A and B,

ii) its direction is perpendicular to the plane of R and -}3), and
can be determined by right-hand rule.

Mothematpcally, R+ B = (Blsin @A ... (19)

Right-hand rule (in Vecter Product):

First place together the tails of the two vectors. Then
rotate the vector that occurs first in the product into the second
vector through the smaller of the two possible angles. Curl the
fingers of the right hand along the direction of rotation. The
direction of the thumb will represent direction of the vector product.

Nowas Hove T - Al ¢ AyS + Ak crsces (20
& 5oepioe BT w8k Vil EeL)
X Z
then ey — ~ ~ ~ ~ o ~
= + A J+ Ak i+ i
A x B {Axi Y:l 5 ) x (Bxl By; + sz)

an oA o 3 R 4on
=A B ixi + ABixj + A B ixk + A B jxi +A B jxj
XX X x 2 X

~on ~ A A A
+A B 3xk + A Bkxi+aBEKxj+AB#kxk
Y z Zox zy zz

since  f.5 =k, Pk =1, kxf =]
& o 3xf o= ok kxd =oed, dxk =5 coiea (22)
& Ixi=5xj=%kxk =0
O NE_ABk-ABY . aBRE+aBi+ABT-uBl
Xy %z Y X b 4 F 2y
— —> ”n ” ~
= (4B =-AB - A j 4 - i
or A x B (Ayz Zy)i+(Asz XBZJJ+LAXBY AyBx)k (23)
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CHARACTERISTICS QF VECTOR PRODUCT

i) The  vector product is non-commutative,i.e.,
-

A X E- = ~“§ X A

In the fig. it is
illustrated that when the
order of the vector product
is reversed, the sign of
the vector is also reversed.

ii) The vector product is
associative, i.e.,

(0 x B) = & x (mB) = m(AXB)

iii) The vector product is
distributive with
respect to addition,i.e.,

- —> i — — - —
Ax(B+C)=AxB +A=xC
iv)} For Kx—é = 0,
a) either of the two vectors is a null vector,
or b) the two vectors are parallel, such as
A%B = ABsine =0
v) For A and B are perpendicular to eaci other then
—% — ~ " p
AxB = ABsin 9° n = ABn [éee eqs.(22)
EXAMPLES:
i) Force on a charged particle moving in & magnetic field,i.e.,

— -
F = gqvxB

ii) Torque,i.e.,

B Ly
To= \? % F
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A -LAWS OF MOTION

Newton's three laws express mathematical relationship among
force, mass and motion of a body.

Eirst Lew of Motion:

Statement: "A body continues its state of rest or uniform motion
in a straight line unless it is compelled by an
unbalanced force impressed upon it".

We define:
ertia: "The property of a body that opposes any change
in its state of motion or rest'.

Newton's first law introduces the idea of force as an agent
causing a body to change its state of motion or rest.

EXAMPLES !
1. A standing car will remain standing unless some force is applied.

2. A fast moving bus, on application of brakes, comes to a halt but
the passengers and other loose objects will tend to continue
their motion thats why they will be thrown forward.

3. A bomb dropped from an aeroplane does not fall vertically but
describes a curved path.

4, When a space ship is launched at altitude, it tends to move
with constant speed.

Second Law of Motion:

Statement: "The effect of an applied force on a body is to cause
it to accelerate in the direction of the force. The
acceleration is in direct proportion to the force
and is inversely proportional to the mass of the body".

Mathematically, iy
F

=y ciaveadAL)

1t tells us that when a force is applied to a body, it moves
in the direction of force and will move more faster as the applied
force remain in function.

In eg.(l) m is proportionality constant and is the inertial
mass of the object. Also this equation tells us for a fixed force,
the larger the mass of a body, the smaller iis acceleration.

EXAMPLES :

1. When a force is applied on a body at rest, it moves in the
direction of force.

2. For two balls-==rubber and lead--- the same force of kick will
produce more acceleration in the rubber ball.

3. When a paratrooper jumps out of an aeroplane, before the
: opening of his parachute, he gains acceleration due to his
weight.
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Third lLew of Motion:
Statement: "To every action (force) there is always an equal and

opposite reaction (force)".
Newton's third law tells us that a body cannot experience a

force from its environments without exerting an equal and opposite
force on its environments. Forces in nature always occur in pairs.

EXAMPLES:

ls In the fig., there is interaction
between bodies A and B.

—
F = force exerted by A on B ﬁﬁrg

AB
'?;ﬁ = force exerted by B on A ﬁf}
then ? - @
ag = 0

2+ In jumping off the ground, we
exert a force on the ground then
an oppositely directed force by
the ground is exerted on us.

3. A paratrooper descending with uniform velocity. Here the force
of gravity is balanced by the reaction of air on the parachute.

4. A person holding a body with a string. The tension and weight
are balanced.
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5= ELASTIC COLLISIONS IN ONE DIMENSION

Let

m, = mass of first body

m2 = mass of second body

vy ® velocity before v e
collision of

first body

vy T velocity before =5 —y

collision of v v

second body

vy " velocity after
collision of
first body
v, = velocity after
collision of
second body
We have from the law of conservation of momentun,

total momentum before collision = total momentum after collision

s Fd
+ V = + LR B R N 3
or mlvl m, 5 mlvl m2v2 (1)
e L s
or ml(vl- vl) mz{v2 v,) vesiaw (2]

Alsc from the law of conservation of energy,

total K.E. before ceollision = total K.E. after collision
or #m V¥ + 3m V2 = amvi + m,vs2 (3)
171 i il 1% 279 kY
2 e ) 2
or ml(vl - i) = mz(VZ = W5

et - 7 = 2+ f«-— te s e e 4
or mi(vl * vil(vl Vl) mz(Vé vz){v2 v2J (4)
Dividing eq. {(4) by eq. (2), we get

+oyiimL T
Vi ¥y Y5 Yy

- 7 4
or V.L - Vz = - [Vl - V2} tsses s (5)

or we  conclude
Speed of approach = Speed of recession
Special cases:

Case a): When my = m2

from eq. (1), we get

vy e Vo= Vl + v2 sesane46)




Adding eqs. (3) & (6), we get

= V’
2 vy 2 2
L £
or v, = v,
/ it
20 ¥, Vi

putting this value of vy in eqg. (6/), we get

£ E 5 + ’
//fg o 2

We conclude
When two particles of equal mass collide elastically,

they exchange their velocities.

Case b): When Vs =0

From eqs. (1) and (5), we get

ol / 4
mlvl lel + m2V2 cesses (7}
= ’ P
& Vl et Vz Vl ssss e (8}
multiplying eq. (8) with m; o we get
i s 4
LT B | i
Adding eqgs. (7) & (9), we get
3 o + i
2 mVy Ma¥s 1
- s
or 2m;Yy = vy ( m; + m2)
5 2m
or V, = T v ssecen (.].OJ
2 my +,m2 1
putting this value of vy in eq. (8), we get
2m
V - 1—-L—- v — v,
1 my m2 1
: 2m
or. Vi = "EIf:lnﬁg Vim0
2m, = M, = m
e 1 1 2
or v = - . v
1 my + m, i




or v = :El__:__fz. v evsese L)
I m, & m,, 1
already we have
? 2m
v = TR v, viiieese (1O)
A ) \When m, = m,

From eqgs, (10) & (11), we get

v =0
1 versas l1g)

AL
& V2 Vi
e concjude:
The incident particle which was moving with Vv + comes

to rest while the target particle that was at rest begins te move
with velocity Ve
B ) hen m2>>'ml

From egs. (l0) & (i1l), we get

vV, X =V
i Ol} * 6 & 5 &80 (13}
& v2 e

e conclude:
The small incident particle just bounces off in the opposite
direction while the heavy target remains almost motionless.

& When m, & my

From egs. (10) & (l1), we get

v

~ V
4 G e

o2 a20 N

] 1

N o~ =~

We conclude:

The incident particle keeps on moving without loosing much
energy, while the target particle moves with the double velocity.
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5-b: To calculate final velocities in terms of initial velocities &
masses of the bodies colliding elastically

When two objects collide and the initial and final velocities of both are
parallel or anti-parallel the collision is said to be one-dimensional. The
collision of two boxcars on a railway track is an example of collisions in one
dimension. Generally, the collision of any two bodies that approach head-
on and recoil along their original line of motion is one dimensional collision.
Although these collisions are exceptional, but they display a simple way of
some important features of more complicated collisions.

[n an elastic collision of two particles moving along a straight line, the
laws of conservation of momentum and energy completely determine the
final velocities in terms of the initial velocities.

If the net external force on the system of masses is zero so that momentum is
also conserved, for one-dimensional collision, then from laws of
conservation of energy and momentum, we have two equations.

my vyt ms v = V'| +}?’J2V’2 (l)
Vo, vyt Ve vyt = Yoy viE + Vamy vy cnal2)
from eqgs. (1) & (2), we have

my(vi- vy )= my (v - ow) (3
my (v - V)= m (V) - v s (4)

dividing eq. (4) with eq. (3), we get
vt v =vht o e (5)

multiplying eq. (5) with m, and then with m;, , so we get egs. (6) & (7)

mi(vit )= my (Vs o) s (6)
malvi B v Y S Eam) (7)

Subtracting eq. (3) with eq. (7), we get

Vo= (- mp)vy b 2 (e ) w < (8)
my +n; my + ny

Adding egs. (3) and (6), we get

Vo = 2(m Jvy +lmy - m)v (9

my +n my + ms
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6- MOTION OF A BODY ON AN INCLINED PILANE

We define:
Inclined plane:

"Sloping surface used to reduce the effort of moving a load”.

To prove :

Constant motion requires no force. Or moticn along a horizontal
plane is constant.,

Galileo observed the
experiment as shown in
the fig.

In the case of a
plane that slope down-
ward, there is a cause
of acceleration. The
plane sloping upward Initial position
there is retardation.

In the fig., 8 ball
tends to rise to its
original height regard-
less of the slope.

In case of horizontal
plane there should be
neither retardation nor
acceleration and the
motion should be constant.

For the planes with downward and upward slopes, the cause of
acceleration and retardation is the force of gravity. However in
horizontal plane for constant motion requires no force.

To show that :
The force can be diluted by decreasing the angle of inclination.
e

Consider a body of mass m sliding
along an inclined plane having an
angle of inclimation &. Neglecting
the force of friction, the force
along the plane is,

F = mgsin &  <ssesfl)

The maximum value of sin & is 1 -
corresponding to € = 90° & the
minimum value of sin O is O
gorresponding te & = 0°. _

o = i 0 = = i 0 =
Fmax mg sin 90 mg & Fmin mg sin O 0
As & varied from 90° to 0°, the force varies from a maximum
velue to zero. i.e.,
the force can be diluted from its maximum value mg to any desired
value by selecting the angle of inclination &




18

7- PROJECTILE

We define:
Projectile:
"An object launched in an arbitrary direction in the gravitat-

ional field of the earth with the initial velocity having no mecha-
nism of propulsion". v

Let
v, = initial velocity of
1 the projectile
& = angle of projection
with horizontal G
. B Displacement :
To calculate, | v Tvaw r<;Lﬁ
the velocity v & angle ¢ VE iR e e e NV,
(at any time t), we have : '
o e s

for x—component
V.=V, seee(2) & x = v.xt vesasn £3)

X nd% I
& for y-component 5
=iy n gl geie sl 4) & = v, t-4gt%.... (B
v, 1y g Y iy g (3}
We have
v = V_COSS’ sess e (6) [A = A cos &
X i b
v = V'Sin& = gt cssme e (7)
Y i
So v s V‘X+ VY
oriv = vicos g + (visin & - gt)
- 2 . a2 L 2
or Vv —J(vicos &)k (viszne gt) [-Ax + AY

2.2

= jvicosze’-f V§51n2&+ gt = 2vigt sin ©

=|vi(cos’e + sin’e) - 2gtv,sin &+ g*t?

or|lv = JVE - 29tvisin E*j;fiiii_:] cenman o 18)

for angle s = visin 8- gt
tanﬁﬁ 5 et v.cos &
X

J'M
B v.sin & -gt
j& ban 1 ___J_.____jgrwl Viadal)

"

or
v.CO0S
1

i
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To calculate the path (trajectory) of the projectile:
We have from egs. (3) & (5),
tes s =A
v cos &t (LO) [Ax cos O

x =
& y = vsinet - e’ (1) [A = A sin O
y
from eq.(10) v
viCQS o

putting this value in eq. (11), we get

;rfsin 58 X =
ey
Y ’CoS v.COos
i i
x2 2
OF yo= o dan Bt % —9'2.' SEC 0~ Jeenees  (12)
Vi
9 2
put ra = tan B & b= ey 880 B
2vi
@ & b being constants, we get
y = &x - b X veveess (13)

which is the equation of a parabola. So the trajectory of
projectile is a parabola.

To calculate maximum height H :

We have from eq. (4)
- si -
vy v sin - gt

since v becomes zere, so

¥ 0l viSin & - gi‘.

v sin &
or Lt = -—4waﬁ—- seseves (14}
We have from eq. (1l), as
v = visin &t - &gt2
= H and f £

putting Yass nd value of t, we ‘‘get

=
v.sin &) v_sin & v.sin ©
H: = ( i ) _j..g.,.__.._. g ‘ ig( l‘gz_ : )
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v?s inze— vzs inze~

or H =-—¥g—--- i %}{_?_

ViSinze-
or H = ——r-g—— ssssss ‘15)

To calculate range R of the projectile:

2
y = x tan &= 4 L% sec’e
¥
for herizental case, y = : 0, so

2
0 =x tan & - Q-Q-g-seczﬁ'
v
i

Taking eq. (12)

or (tan O = ‘-L"‘O'f-secze*}x o)

Vi
Either x = © Enrhich is point ef projection (0,0)
or tan & - 1\»-9-3— secze— = 0 vwessese o (16)

Y1
the value of x = R , the range, so

tan & -~ 3% g R set:'?e-z e]

i
2V§tan e 2V§sin & x cos’zé—
BE Rom e W
g sec @ g cos €
2 V?sin & cos €
or R = . esesss (17}
g
since sin 2 & = 2 sin B cos &
v.;sin 2 &
s0o R ‘-"--—L‘—-—'— EEEE S8 (l.gf
g
Maximum range, Rmax"

In eq.(18), vy and g are constants. For R maximum sin 2 & should
be maximum. And the maximum value of sin 2 6 = 1 =2 &= 90°

So : or. .= 459
o il see :
B s)
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8~ CENTRIPETAL ACCELERATION AND CENTRIPETAL FORCE
We define:

Centripetal acceleration: Acceleration directed towards the centre
of a circle? -

Centripetal force: ‘A force that causes a body to move in a circular
P path.”
-

When a body moves along a circular path, its direction of
velocity continuously change. From the definition of acceleration
change of velocity produces acceleration, which is called centripetal
acceleration.

To calculate the magpnitude of centripetal acceleration:
Let

m = mass of the stone
= angular speed of
the stone
r = radius of the circle
v = 1its linear velocity
along the tangent
v, T velocity at point A
O velocity at point B

since two velocities at points
A and B are same, S0

Vl - V2 =¥ coo?.'c(l)

from fig(b), we have

— -~
A= =
Vi AV v2
e i
or AV = V2 Vl oc-ooc(z) (
Now ZAOB = ZDOE = &a& A theorem:
Angle between the
For ama)l sngle perpendiculars of the
Chord av. = arc DE 0000(3} Sldes Of an angle is

equal to that angle.
and sin 6 = © ¢o¢0(4)

We have AV
§ip € = me———— Taylor's series expansion

Va for;
e o°

i - - F o = e
a1 ey
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putting the values from eqs. (1), (3) & (4), we get

L
for small change
vab = av .'.f..?.."(5) @& = A6
multiplying and dividing by at to L.H.S.,
we get A i
v At—At = AV
0
or AV = vwt csscelb) [&J= B
or ""’Z"’"“tf - WV o--.s(7)
Now we define -
—> Vv
a B t u...(B)
so a = WY COI..(g)
vf‘ v = ¢
or la s ofe 2 _F.] sweess(10) | . L
In vectorial form 2
? & _mzr ] _—-y?r seneslll])

where negative sign indicates that the acceleration is towards the
centres (Indicated by angle 4. in fig.(b).

To calculate centripetal force:

We have :
? = m‘;’ ssssee (lZJ
from eqs. (1l1) & (12), we get 5
T cni®s = ..-'1’;-? )
o |E, '“:2 cossanliay
EXAMPLES :

l. A stone is whirled in & horizontal circle by means of a string.
2. Planets move around the sun.

3. When a racing car moves round a circular track the friction at
the wheels provides the centripetal force.
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G- WION'S  LAW O GRAVITATION

Statement:

"Everybody in this universe attracts every other body with
a2 force which is directly proportional to the product of their
masses and inversely eroportional to the square of the distance
between their centres".

Explanation:

If two bodies of masses
m, and m2 are placed at

m,
a distance r from their h A
centres, then the force of g
attraction is given by

P“mfﬂg IF'LI:)E“"—' F= d‘“_}}'\}
& F X5
I

Combining the two  proportionalities,

m.m
F oo =il ceaseh, 1)
r

m_ "
or E ;G—J‘Zl‘ eresa e (2)
I
or in vector form, _, mim. o
£ F = “G"‘LZZ-I: IR R N (3)
T

where G is proportionality censtant, called constant of gravitation
or universal gravitational constant. Negative sign indicates attract-
ive force.

galculation of G

In the fig., we have

A light rod having length 1
is suspended with a quartz
fibre. Two identical balls
each of mass m suspended from
rods' ends. Heavy balls each
of mass M are brought near
the small balls.

Points A, B & C shows lamp
and scale arrangement.
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Magnitude of each force between masses M and m is

P - Gmm “ s es s (4)
I
the value of torques are .
= G M m [T: r F
ﬁﬁ = ) % 4
T
oeMom L
(Z; T r2 2

where 1/2 is moment arm. (1 being length of rod).
So total torque, T, is

o = SMal S¥n L
Toze bl mamg e Rl
T r
or T = _Sij%fa_ 1 eesnesaal(D)

T

Now force due to M and m produce torque which causes a twist in
the fibre.

The twist © is proportional to the torque ,

Ty
or T=ce e e)
where ¢ is torsion constant and can be calculated.
Erom egs. {5} & (6), we get
G Mum
el - 80
T
2
Lie err
or G = Mml seee s (7}
is measured by lamp and scale arrangement.
can be calculated from the material of the fibre.
is distance between M & m.
is length of the rod.
M & m are masses of heavy and small balls.

- H oo @

The value of G found from this experiment is

& = eera x0Tt N mzkg"2
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10~ WORK DONE AGAINST THE GRAVITATIONAL FORCE

To prove that:

The work done in e gravitational field dis independent of the path

followed by the body.
or

The total work done in moving a body along & closed path in a

gravitational field is always equal to zero.
Let )
We have a gravitational field 6
in which a body moves from point A
to C through two paths.
To calculate the work done
in taking the body from A to C,

) WA+C s W.done directly from A to C

dz

W, done from A to B,

ii) Wy pocr

then from B to C. 7 90° ‘
We have #
i arg ey '
g . "
= w.d ; d
= wd cos & coser:—d-;
S0 Vo g oo dl""(l) or dl = dcos O
And o --)ay
Mg T Fedy
i
= wdlcos & so cos G =1
or NA'—’)'B = w dl ts s e (2}
i e
And WB o o F-a; -
G wE demems DT
S0 BN Bkl cos 90° = O
or WB-%C = 0 P o)
So from egs. (2) & (3), we get
WA%B%C = W dl FaQ R di saeis (4}

From eqgs. (1) & (4), we
field is independent of

conclude that, the work done in a gravitational
the path followed by the bedy.
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Now work done in moving & body from C to A is
-

besR _;c_j.,
= w.d g = 180°
=wd cos & or cos = =1
= \ & d cos &=d
50 wC—aA wdl evaelD) 1

The total work done in moving the body around the closed path ABCA is

= + W
Wiotal o T M CoA

From egs. (2}, (3) & (5), we get
Piotal. = 1Y

w dl - W dl = 0

+ 0 + (=-w dl)

so e )

Wiotal

Thus, the total work done in moving a body along a closed path in
a gravitational field is always equal to zero.

Conservative field:

In which the work done between two points in the field is
independent of the path followed between the two points.

Examples of Conservative fields are:

i) Gravitational field
ii) Electric field
iii) Magnetic field.
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11~ KINETIC ENERGY

We define:

"The kinetic energy (K.E.) of a body is the energy possessed
by @ body due to its motion".

Let
A body of mass m is
{n

moving with initial velocity
v, « A constant force F {;
be applied to stop the body, :
the acceleration produced is ﬁ_‘_ﬁjig::z::i*""
F TR L e 20272
as-E [rom
m
The body comes to rest after
covering a distance d.
So we have
v = o
Lok
ST
S = d
Yo =
Using the equation, 5
Yo =ivg = 2as
putting the values w
0= v2 20K - “ xd
m
2
or Fd = m2v

F d is the work done by the body before comming to rest, which
must be equal to the energy possessed by the body due to its motion,

SO
Ko E. = tm\i‘, sre s s e (l)

Its a scalar quantity. And the units of kinetic energy are the
same as those of work.
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12- POTENTIAL ENERGY

We define:
"potential energy of a body is the energy possessed by it due
to its position in a field of force or by its constrained state".
To calculate
Gravitational Potentiel energy (P.E.),
Let

In the gravitational field,
a8 body having mass m
is raised  through height h
from the ground. °

Here the weight is balanced
by the force,

F = w

S0 the work done against the
force of gravity is

wh = magh

This work done is due to the change in position, which is called
gravitational potential energy,

P. E. = mgh assees (1)

Absglute Gravitational Potential Energy :
We define:

YEnergy required to move a mass from the earth up to an
infinite distance".

To calculate the value of absolute
gravitational potential energy, N
Consider :
A body of mass m !

which moves from point 1 to ;
far off point N 24

As gravitational force changes
with distance, so divide the
distance between 1 to N into
small steps, each of length aAr.

i

i

We have Loy
by - = AT R (2) (l ————— *—’

with constant velocity in the vy I f
gravitational field. ! !
i
t
1
1

2 1 \
and the mean distance \“—’/
Lh5
ol = ) 00-00{3)
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From eq.(2), we have
r2 =ar I‘l csesnss  (4)

putting the value of r, from eqe.(4) in eq.(3), we get
T or AT Hir

Fonl 1 . 1
T+t Ap o+ E N
or r2 = ( -l 5 L)
. 2z rl . AT ‘Z-
2 22 /
200002 {ar)” |
or r2 =r r 7 * riAr
Neglecting L—%—r as (AI‘)2<< rf )
2 2
22 e 2R oriE - op] [ from eq. (2)
- /’f/ s 0 ,xf/
2
or. T = rlfz sses e (5)

Now, if Me is the mass of earth, the gravitational force at the centre

of the small step is o m M
P F = G Saaie)
b o
From egs. (5) & (6), we get P
F = @G et seves (7)
Tt
As this force is assumed to be constant during Ar, so
m M
& g
Wl—az . r.T laz)
12
m Me R
=G (r. =1 ) from eq.(2)
T
s 2 1 N
-4
or W = E M (el e W, = ¢ mM, e
12 e T, r, 4 AR
1 1 :dmm("éf
Similarly W =G M e e ] ¥4 15
223 T L3N
e 2 r3 - d’mm,z (?L’; "’q’_\')
o k 1 L
i = GMm (—/— ~ —=
‘364 e { Ta r4)
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13- MOTION UNDER AN EIASTIC RESTORING FORCE

Consider
A body having mass m
attached to one end of a spring
and placed on a frictionless
horizontal surface,

When the mass is pulled
through x,

- -X- -

From modified form of Hook's
law, the applied force F is

F =k X oootc(.‘-)
where k is spring constant.

Due to elasticity, the
spring opposes the applied
force. This opposing force
is called restoring force,
Restoring force = F = —kX.s.(2)

In fig.2, mass m is pulled
towards right with some force,
the extension gives rise to
restoring force.

Some work will be done in
displacing from equilibrium against
this force. It will be stored as
its potential energEé When released
this PE changes to KE. At equilibrium
all PE converts to KE. Due to inertia
it will move towards left.

When compressed whole KE changes
to PE. The process is repeated and
the mass continues to oscillate
between the extreme positions.

To calculate the acceleration-a

P i
m
; o
P 7

(
We define, Hook's law as

"Within the limits of perfect
elasticity strain is directly
proportional te stress".

stress o strain

stress
strain

or

or = const.

a
L

e
=
I
tm

" =k

a & E are const., so
Foc ]

or F=k 1

or F=k x

We may call it the modified
form of Hook's law.

of the mass, we have 4 o A
i
F = ma cevnen (3) 4 I/
From eqs. (2) & (3), we get & : ‘ 20
-k x =ma > v grg FFITTITTT
ee : “ ' (0] A
or a = =(comst) x ¢ j:@mmggio :
or a ol = x . &E - s
or a ol =~ displacement _ . o
Such a motion in which acceleration is proportional to the displacement

and is directed towards the centre is

called Simple harmenic motion.
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14~ SIMPLE HARMONIC MOTION AND CIRCULAR MOTION

To relate SHM with circular motion
Consider

A point P meving along circular
trajectory around the centre O, with
angular speed &J.

The radius of the circle is r,
speed of the moving point P is

=T ssssss0 (.I.)
Yo w
Consider the motion of the point Q,
the projection of P on the diameter AB.

As P describes a constant angular
speed (O, Q oscillates to and fro along
tge diameter., As Q moves away from O,
it slows down, & as it moves towards O
it speeds up, i.e., its acceleration
is directed towards O.

The magnitude of acceleration of

the point P is v
e e B f"p =0

c T
Its component along ACB is

2
a = rcoes €
Since it is directed towards centre and x = r cos ©, so

o

Thus the point Q has an acceleration proportional to displacement
and directed towards the centre, which is the characteristic of SHM.
So the projection of P executes SHM. We can define SHM as " the
projection of uniform circular motion upon any diameter of a circle".

To calculate time period T of Q , we have

L L 5
L = % gr k.= om s B 27 rad.
i ara
SO T = """"“-w sceesce (3)
From the fig,, the instantaneocus displacement X is :
) e QIR o Coswt sevenes (4) [Gz(bt
The speed v of the point Q, (from the fig. )
h ¥ SRR v sin £ or Vo= rwsin&)t sesesss (5)

2

Ny
orv=rwm sin®e + cos®e = 1

from eq.(4), coswt = x/r, so [;r sin & = 1 - cos°or
W= "b"‘oﬁ—"%pz Ay e —(8)

. Ar ey A 7&'2:__#~u47)
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OF A MASS ATTACHED TO A SPRING

We have ( from eq. 13.4 amd 14.2) '
a = -7 X
& BoE

Comparing the above equations, we get

w = Jk/m IR E N E N (l)
So, the time period of the mass attached to a spring is
i
= w
or T = 2“1!1/1{ seene (2)
In the equation x = r coswt , putting r = x,, we get

x = x,Coswt

lx = x,cosfk/m x El Seesna (3]
The instantaneous velocity,
j‘é’—f—
Wfr -~ x
}k/m j;?—m:—_xz L
—
or |v = xofk/m !1 = x2/xg I

its maximum velocity , v, when x =0, as

From eqs. (4) & (5), we get

or

Vv =

or b, G

veses (4)

(AR RE] (5)

v = Vojl - xzfxg (X RS =] (6)
The kinetic energy is
. KeEe = % myV
2
= 4 X, k/f (L - x2/x§ )
or | KeE. =

2
* k XE( 1 -jzj sesese(7)
X

Eq. (7) shows that the kinetic energy is maximum, when x = O,
= 2
'(K-E:)mX - ﬁ'k xo l sss s (8)
the kinetic energy is minimum, when x = x,,» (from eq.(7),

(9)

s s e

[EK’E')min. =

o
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To calculate P.E., we have

= k x
for x =0, F=0
for x = x, F = k x
So average force is .
Pow DEKE L o4y

Work done in displacing the mass through x is

W. done = 3kx.x = 4 k x2
which will appear as potential energy, so

PoEs =& k x2 vesnuas 410)

It shows that potehtial energy is maximum when x = x,»

The potential energy is minimum, when x = O,

{(P.E.)min = ﬂ criiens [12)

Total energy at any displacement x is
E. = PR + KE

2
2 2 X

= %‘kx + ‘&'kxo(i e ;'2)
°

or I_E = %k xéi} sasenss {13)

From egs. (8), (11) & (13), we see that :

The energy oscillates back and forth between kinetic energy
and potential energy but total energy of the mass remains constant
e verywhere.

e
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16~ THE SIMPLE PENDULUM

We define:

"4 simple pendulum consists of a single isolated particle
suspenged from a frictionless suppert by a light, inextensible
string®.

When a simple pepdulum is

disturbed from its mean positien, 3
it perform a vibratory motion. ?\
To show that B

The motion of the beb is {
simple harmenic,

let the bob is at pesitien B

during its vibratory metion. : \
Two forces are acting on the bob. L0k o B
1) Weight mg of the beb in ., mg cos §
vertically downward direction A mg L i

ii) Tensien T acting along the
string :
mg is reselved into two compenents
Component of mg along the string mg cos 8 .....(1)
n n " perpendicular " " = mg sin & .....(2)

H

Since there is no motion along the string, seo

T = mg cos &

We have
F = ma tsrees (3)
The component mg sin O is responsible for the motion, directed
rowards the mean positien, so from eqgs. (2) & (3}, we get
){a = - pg sin O~ 8 = o
a = - g sin©& erx=16
or &= x/1

We suppose that angle O is very small,

. Taylor's series expansion for,

sin © = 6,
a ﬂ-ge‘z-gf 51!’]8‘=9-§? ‘f"""s"i""'lt.-.
g
or @ ‘-1—,"36 ssseses (4)

From eq.(4) we see that the acceleration is proportional to the
displacement and directed towards the mean position, so the motion

of the beb of simple pendulum execute Simple Harmonic motion.
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To calculate time period of simple pendulum,

We have frem SHM ,
2
a = =wx eniaiean (B)

Comparing egs. (4) & (5), we get

(ot 9/1
or L =J—§7i.' sesEsree (6)
Tl
(0]

We have time period from SHM

T’ = e case (7)

From eqs. (6) & (7), we get
27N

T :Ig.l

ZTT l’/g sseese (8}

H

or T

Eq. (8) shows that the time period T of simple pendulum,

i) 4is independent of the mass
ii) depends upon the length 1
iii) depends on the value of g

B¥ determining T and 1 we can accurately measure the value
of g at certein place.
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17— TRANSVERSE STATIONARY WAVES IN A STRETCHED STRING
We define
Stationary Waves:

"Naves apparently standing still resulting from two similar
wave trains travelling in opposite directions”.

Transverse Waves:

"A wave in which the particles of the medium vibrate at right
angles to the direction of travel of the wave".

To make L A |
Formula for velocity /v |
general formulas for wavelength A Pl e TR kR
and frequency f of transverse )\/Z )

stationary waves.

Consider a string of length Fig.(a)
1 which is kept stretched at two
ends so that tension in string is T. e, A
In fig.(b), string is plucked e ol
at the middle, the string vibrates A= .
in one loop, with a frequency, say s : z
£y 0 89 . Fig. (b)
1 = -A—z and v = fl%l
or)\l=-‘21 or v =f.l.x 21
oz Ay = = we(dor £= 71 (2) P
. 7 )\.
In fig.(c), string is plucked Fig.(¢) e
from one quarter, then it vibrates
in two loops, with a frequency,
say f2 y S0
1 = )\2 and v = f22\2= le P}/,f_Af_R Az Al .
or/\2= 1 or f2= ——_‘{- = 2 §¥—~ i Na NE TN
A o2l L :(3) From eq.(2), Fig.(d) { = %_' A}
oLl o we get,
. 2f1"(4)

In fig.(d), the string is
plucked in sueh a way that it
vibrates in three loops, with
a frequency, say fa s 80
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1 = %‘As and v = f{‘3= fs%‘

or Ay = 2 ..(5) or £,2 3 =31 ..(6)

Rewrting eqgs.(1),(3) & (5) And (2], (4) & (6)
Ay = i e 4. o
Ap B -2—1‘2'- £, 020
Ag = <L f, =3 f

Generalizing the above egs., we get

.2 [ l anee -
&n‘—; n 1 tot-vo(?) And fn n f}. cse s (8)

Now if m is the total mass of the string, tension T and length 1,
then from eq. (9}, we have

o~

We have
v = |[-BEEA L o) >
m! vV = Vv X {' S = vé/ 1
z or v = S/t=—51—
Putting this value in eq.(2), STy *
we get i s _%_ e q
LN
‘cc(ll} =g %1 [a o t
ar = % x 1 Fon maF -
or g ==& =
From eq.(8) we conclude that i
we can have only quantized i v2 Lol Ll
frequencies on the stretched o m
Str:mg. i.e. fls 2f1,3fl---onn e
fl is called fundamental and so Vv =J—I—ﬁ—l— eees (9)

others are called harmonics. =
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18- NEWION'S FORMULA FOR THE VELOCITY OF SOUND IN FLUIDS
We define: e HoEs
e etine .
dounds Bodciiy o omass
"The series of disturbances in ReELY. T Tvolume
matter to which the human ear o j? ooua
is sensitive", Vv

The velocity of sound waves
depends upon the density, {
of the medium.

Also it depends upon the
elasticity, E of the medium,

Following is

Newton's formula for the
velocity of sound in fluids,
iees, in liquids & gases.

"Velocity of sound is
directly proportional to the
square root of the elasticity
and inversely proportional
to the square root of the
density of the medium".
Mathematically, g

v ===

Q

gl

/

' 3
1 compression
I ( +,}z J

Elasticity(E): The property

of a material body to
regain its original condition,
on the removal of deforming
forces.

Bulk modulus:
Elasticity of volume.

Young's modulus:
Elasticity of length.

Rigidity modulus:
Elasticity of shape.

Stress: The distorting force
per unit area set up inside
‘the body.

Strain: The change produced
in the dimensions of a body
under a system of forces.

I

Amplitude

rarr{facli N

(§;ﬁ!)

“\ /\{\ﬂ /

\

Newton assumed that sound waves
trave] through gases in such a
condition that there is no change
in temperature (isothermal).

&

ol
v

Isothermal process:

The process in which the

temperature of the system
remains constant.
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To prove: -
Elasticity of volume, E 1is egual Boyle's Law:
to pressure, P, The volume of a given
Consider the volume V of the air mass of a gas is inversely
at a pressure P. proportional to the pressure,

if the temperature is kept

For co a g i
nstant temperature, if we g

increase pressure from P to P + p, o 1
the volume will decrease from V to P Vv

V - v, we have from Boyle's lLaw,
Yo B
or PV (P + p)(V=v)

01‘}’( }”{-Pv-l-pv-i-pv

Neglecting pv as pv<{P & V , we get

or pV = const.

I

N o
o Vv
or P = i e
H N .. stress.
8% vV strain i
50 P = E T (2}

From egs. (1) and (2), we i'get

Vv =J f’ ssssseesnce (3)

There is difference of 16 % in the theoretical value of velocity of
sofnd in air determined from the above formulas and the experimental
value.

laplace's correction:

"In ¢alculations of the velocity of sound, to use coefficient
of adiabatic and not to use isothermal elasticity".

Sound waves move  as longitudinal Adiabatic Process:
waves. They accompanied by compressions
and rarefactions. At a compression the
temperature of air rises and at a
rarefaction temperature decreases. So

A process in which no
heat flows into or out of
the system.

constan{ temperature does not maintain Specifi ect at constant
and Boyle's law is not applicable. 2
Instead of PV = constant, we have pressure,cp-
e It is the amount of heat

Pv® = constant .....(4) energy required to raise the

temperature of one mole of a
gas through L°K at const.pressure.
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If we increase pressure from P to P + p
volume will decrease from V to V = v,

so, i
pv¥ = (P + p)(V - v) "

or B = (P +p¥L - 3-)

or P=(P+p)(l-"‘\;—')f

From Binomial theorem, we get

- 1)

- vl
P (P + p)(1 " 5

of (v/V) as v<<V, we get
P o= (P+pl-¥Y=r)

or )/ =,P’— P‘f§‘+ p - p'K‘%r

Neglecting pY-—%— as pv<<P &V,

o - Pit
P - _stress
or {P = m o Strai-n- = E tbc(5)
From egs. (1) & (5), we get
sessce (6)

which is Laplace's modified
expression for the velocity of
sound.

If we put the values in the
above formula, the theoretical
value agrees with the experimental
values

So Laplace's correction is
correcte.

o
v

Neglecting squares and higher powers

rSpecific heat at constant

volume, CV :

It is the amount of heat
energy required to raise the
temperature of one mole of a
gas through 1°K at constant
volume.

“

We define:

¥=- &
v

We have

Binomial series expansion:

(1w x)B iy iy f x + 51%4%~£l x2
nin - 1)(n=2) 3
: 1.2.3 Tilens
To prove: ¥
PV = const.

If we have one mole of a gas,
then for adiabatic process,
we have
0= nC\;'lT + PAV ...(1)
for small change per unit vol.
dg = CvdT +  pody

. for adiabatic change, we have

da =0 = cvdT +.P.aV
or cvdT +Pdy = 00,.0(2)

Now we have for one mole;
PV = RT
differentiating it, we get

PdV+ VdP = RdT

_ P dV+ VdP

or dT “—-""'""'R_'""—'-
or dT = EAVENAE . (3)

o v
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The speed of sound varies with the

temperature of the medium.
voﬁrf
or more exactly
v =]T
or Vv = '1‘l cenentl)

& v2 =E wiasaf2)

Dividing eq.(l) by eq.(2), we get

v T
.—Y.l_ e _.L ""{7)
1 Ta

The speed of sound in air
increases by .61 m/s per degree
rise in temperature.

We have
For 1° rise in temp. cha&nge in v
" to " " " " won
€eQe

Speed at 0°C, v, = 330 m/S

-~

From egs. (2) & (3), we have

j PdV + VdP =
c,( -E;—-qf——) + PdV = O

v

or C.PAV + C VWP + C PdV -« C PdV=0
v v P v

1

or C VAP + CPdV =0
v P

CP
v

= K’;

PdV 0]

or VdP +
C

.

Cv

VdP + ¥ PdV o}

put

"

i

L Dividing throughout by PV,

_gE. 4-(9%}-= 5]

Integrating, we get

«6lt m/S

log P + Kieg V = const.

o * 1°C, v, = 330 + .6l = 330.61 m/S or log(PV ) = const.
" " 2%, v, = 330 + 2x.61=331.2 m/S or taking antilog,
i =1+,
- PoNE v, - o000 F bhelee,iall PV’ = sncther const:
So Vi = Vo t .6l %o
¥
or Vi = Vt - oélt cct-oo(B) i Ly = constant.
-
We have m

From eqs. (2) & (iii) we see that =
E and £ are propertional to
pressure, so the speed of sound or Fol 1N ... (1)
is independent of the pressure. Kl BV = bhset

or Poll/V i yii (11)
From eq.(i) & (ii),we get

pocl L (48D)

.
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19~ DOPPLER'S EFFECT

Statement:
"The change in the pitch of sound caused by the relative
motion of either the source of sound or the Observer is
called the Doppler effect”.

Explanation:
b R P IR T

It is observed that the pitch of sound of a whistling train
approaching a Observer increases and when the train is moving away

the pitch decreases.
dllustration:
Consider this effect under the following cases:
1) Qbserver is moving towards a stationary source

When the Q,bse_m.g_;:' is moving ; S e
towards the source with S N G
Veletir it n@vgvavir e o

Now Obgerver receives more ; ]
waves in one second than he 1

is at rest. ; {)C/\ /) Q ﬂ‘____- _;;5, Lo
3o 0 ,..::A‘

o distance tra ed S@C.,
Additional waves 7 wavaleagth [
) v

=

Since v = Af or )\—-"'%“ » S0

H

R

h

oo

<
>‘,\‘y

U

Additional waves = T f

And the pitch f4 of the sound heard is

; _ e Uy
S 2ty N Lo vr,)f
e + U
or{g 1= llnet s e R

As fn >f , therefore the pitch of the sound heard by the Obgerver
will increase. _

2') opserver is moving away from a stationary source

1f the oias,grv_e,r is moving away from the stationary source, the
sign of u,’o should be reversed, so that

- v eile Lo,
fi. 7 P (2
As fg £ f , therefore the pitch of the sound heard by the Observer
will decrease.
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3 ) Source is moving towards the sta;;gg ry_Observer

Let

Pés;tion of the source be § — 5 SN N
" " QObgerver " A mla\_/ﬂumu[\u U U

frequency emitted by the source = f'
i Fig.(a)
velocity of the source = M, " o [

velocity of the sound waves = v

If the source is at rest, - (b)_kyf N
then from fig.(a), we have =
Distance whic waves occupied

o Number of waves

No. of waves during ene second is f
and occupy a length v, so

A=t

If the source was moving towards the ohserver, shown in fig.(b),
f waves emitted now contained in the length (v -a%g, 30

Sy e
A = f

The changed frequency £, is given by

e ey oy f
2o !_%Jﬁﬁ v -l
or e (3)

As f, > f, therefore the pitch of the sound heard by the Observer
increases.

4.) Source is moving awa m stationary Observer

1If the source is moving away from the Observer, the sign of
shauld be reversed with the result that

i ¥ s e
fD = V+u.f . (4")

As f. £ f, therefore the pitch of the sound heard by the Observer

w111 aecrease. Al
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Applications of Doppler's effect:

l. Applied to light:

The frequency of light from certain stars is found to be slightly
more and from other stars slightly less than the frequency of the
same light emitted from the source on earth. Their velocities can be
obtained from this frequency difference.

2. Ultrasonic waves from a bat:

A bat determines the location and nature of objects by sending
ultrasonic waves.

3. Reflection of zadar waves:

The frequency of the reflected radar waves is decreased if the
lane is moving away and increased if it is approaching. From the
observed frequency difference the speed and direction of the plane

can be calculated.,

4. Detection of submarines:
When under-water sound waves (sonar) are reflected from a
moving submarine, we can detect its location.

5. Velocities of earth satellites:

These velocities are determined from the Doppler shift in the
frequency of their transmitted waves,
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20- YOUNG'S DOUBLE SLIT EXPERIMENT

We define:
Intexference:

"The phenomenon in which the two waves support each other at
some points and cancel at other".

To obtain interference of light waves,

the following conditions must be ful-
filled.

i) Sources must be phase coherent.
ii) Sources should be monochromatic.

iii) Linear superposition should be
applicable.

Young's double-slit experiment
gives the experimental evidence for
Huygen's wave theory of light.

The experimental arrangement
is shown in fig.(1l).

A screen A with slit S, is
placed in front of a monochromatic
source of light.

The cylindrical wavefronts
emerge on the other side of screen A.

These wave fronts arrive at screen
B, which has two slits Sl and 32.

5
Sl and 2 behave as

coherent sources. These
wavefronts produce inter-

ference. The resulting su:rce i
interference pattern is Ll
obtained on the screen, A~
consisting of alternate ~ e

bright and dark parallel
bands called fringes.

To obtain

Qualitative description
of Young's experiment,
seo fig.(2).

Consider a point P
on the screen. The waves
reaching at P have
distances SLP and SzP.

We define:
Phase coherence:

Producing of two waves
of same wavelength and time
period at the same instant.

Monochromatic:

Light consisting of only
one wavelength (or colour).

Superposition:
Combining the displace-
ments of two or more wave
motions algebraically to
produce a resultant wave
motion.

-

Cylindrical wave front:

A wavefront whose equi-

of coaxial or confocal

S

Eylinders.

il
S

phase surfaces form a family




r
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The path difference is

= 32P SlP esiaall)

SLQ is drawn perpendicular to SZP
D is distance between screen & slits
& d is distance between two slits.
since D> d
so S P=QpP

1
*
Also 52Q d sin & ....‘(2)

-

S
a

From eqs.(l) & (2), we get
P = SlP =-d sin Broiiael3)

32 L
for P to be bright fringe,
for constructive interference
d sin &= mX\ aeaes(4)
And for dark fringes,
d sin &= (m + 2N\ v..e(5)

m.= 0'1,2,0010

l.€.

Now from fig.(2),
tan @% = =

Y
D

OR
or. Y, = D tan 65
or y =D sin 6 +e..:(6)
*
since & = e ,
so y, = Dsin e

from eq.(4), we have

Fig.(é)

Constructive interference:

The interference of two waves,
o that they reinforce one
nother. Its condition is

path difference,d = m s
m=0,1,2,3,54¢

Destructive interference:

The interference of two waves,

so that they cancel one an-
other. Its condition is

path difference,d =(m + %) ,

me 0,108 0,

*Angle & between any two lines

is equal to the angle between
their perpendiculars.

o
|
|
0

0P << OR

so OR £&= PR

or tan & = sin &
m m

since

sin g% = m A/g 5
e e mh_ ss 0@ 7
%9 Yo © 4 - d
Yy d
e pa, . iy ...--(8)
or A= Sn 4
From eq.{8) we can calculate A .
Eqs(7) is: Position of mth bright fringe = v = m-k"g' saaial9)
G e 0, AD/d, 2AD/d, .
Similarly : Position of mth dark fringe = Yo (m + %5)\D/d ven(10) _
“ ; = o _MAD fm-Urp d.e.
And Fringe width = b AR 7&- e

so Fringe width = A

D

I— c-ot.(ll)

ol



49

21- THE MICHELSON INTERFERCOMETER
Michelson Interferometer:

Device includes one half sivered mirror and two plane mirrors,
using interference of light waves to measure very small
distances.

This device splits a light beam into two parts and then recombines
them to form an interference pattern. It is used for accurate

measurement of wavelength. ” _ anable)
The experimental arrangement I i
is shown in the figure.

Monochromatic beam of light Mz
is split into two rays through ( Diffuse )
€

half silvered mirror M. light soure
One ray is reflected towards®

M, and second ray is transmitted iﬁ:)
through M towards mirror M,. Bam) ) .
£ ompensator
After reflecting from mirrors splities, ( e
My and M, , the two rays recombine 1
to produce an interference, seen '?
through a telescope. Eye

The glass plate D is placed to compensate the path length.
The path difference is varied through move-able mirror M, -
3o we see a series of bright and dark fringes.
If M, is moved a distance of M4, the path difference changes by A/2.
Then the two rays interfere constructively giving rise a bright
fringe.

When M, is moved further N4, the total distance covered is M\/2,
a dark fringe will appear.

Thus we see successive bright and dark fringes, as the mirror
moved a distance A\/4.

The wavelength A is measured by counting the fringe shifts m
for a given displacement p of the mirror Ml « 30 we have

B,

p = %—m); B R RN (l)

This interference is used tp make very accurate measurements.
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22~ POLARIZATION OF LIGHT WAVES

We define:

Polarization (of light):

"The limiting of the vibrations of light, usually to vibrations

in one plane".

The phenomena of interference

and diffraction proves the
wave nature of light, but
polarization shows that light
moves as transverse waves.

To distinguish between
a transverse wave and
longitudinal wave, @ mech-
anical experiment can be
performed as illustrated
in £ig«(1)s

Transverse wave on a
string 1s passed through a
wooden piece with a slit P.
If the slit is at right
angles, the wave is not
passed. If the wave was
longitudinal, the slit
position does not count.

Consider a begm of ord-
inary light, consisting of
different planes of vibrat-
ions. Also directions of
vibrations are perpendicular
to the propagation of waves.

Shown in fig. (3).
Under certain arrangement
the vibrations are allow=
ed to pass parallel to slit.
The resulting light is said
to be polarized.

In light waves, a tour-
maline crystal plays the
same role as the wooden slit
in the above mechanical
illustration.

When two tourmaline cryst-
als placed with their crystal

axes parallel, a beam of light"

falls on them is transmitte

(b)

E’ig- (l)
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If one of them is rotated, the intensity of the transmitted light
decreases and finally cut off when the axes of two crystals become
perpendicular to each other.(fig. (3) ). On further rotation the
light reappears.

This transmitted light is called plane polarized, which is defined
as a beam of light in which all the vibrations are in one direction.

Factors:

According to electromagnetic theory, light waves consists of
electric and magnetic field components perpendicular to each other.
When li%ht passes through certain crystals, the electric vibrations
are confined in a particular plane are moved in a single direction.
In.general polarization depends upon,

l. Selective absorption of light
2. Reflection of light
3s Refraction of ligh

4, Scattering of ligh.

APPLICATIONS:
1l Polaroid filters:

Its a transparent plastic sheet in which needle like crystals

are embeded., These filters are used in many fields for polariza-
tion of light.

2% ©ptical activitv:

Concentration of sugar in blood or urine is determined through
polarized light.

3. Cuptaipless window:

An outer polarizing disc is fixed and an inner one is rotated
to adjust the amount of light.

4. Head S:

At night head-light: glare can be controlled through polar-
izing headlights and light polarizing viewer.

5. Phetegraphy :

Polarizing discs are used in front of camera lens to enhance
the effect of sky.
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23- Equation of Continuity
STATEMENT:

“The product of cross-sectional area of the pipe and the fluid speed at any point along the
pipe is a constant”. Mathematically,
A1 Vi — Ag Va

PROOF:
Consider
A fluid flowing through a pipe of non-uniform size.
And the flow of the liquid is

s
1%

;12

streamline & incompressible. AN~
Let
As in the figure A
At left side: —3] A e
Velocity of the fluid = v .
Move through distance = A x, Density = mass / volume
Area of cross-section = A pm/V
So volume = V= Ax; . Ay or m=pV
& mass passing during At
Amp=p V= ppAx; . Ay S=wvt
or Amy = pp Ay vy . At e (D or Ax;=v t

Al right side:

Velocity of the fluid = v,
Move through distance = A x3
Area of cross-section = A,
So volume = Vo= Ax; . Ay
& mass passing during At

Amy=p2 Vo= prAxz; . A
or Am; = p2 Az va . At {2)

As the streamline flow is incompressible, so

~

Am; = Amy ...(3)
from equations (1), (2) & (3) we have

pr ATV AL = pa Az va L At
since density is constant, i.e., p; =ps =p . S0
pAIVI =pAavy
Ayvy = Ayvp

Which is Equation of Continuity.
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24- Bernoulli’s Equation
STATEMENT:

In a steady frictionless motion of a fluid acted on by external forces which possess a
gravitational potential pgh, then
P+%pv+ pgh=constant

where P & p are the pressure and density of the fluid, v is the velocity of

the fluid along a streamline.
PROOF:
Consider

A fluid is flowing . (in the figure) ) ax, e

And assume: )
1) The fluid is incompressible,
2) Non-viscous,
3) Moving with streamline flow

Let (shown in the figure)

i \ \
A liquid of mass (Am), flowing through A ) - P
A pipe during time (t), J ?F <
] 7 «?)e -

At left side: A, 7 A ) Am

Pressure = P, |
Velocity of the fluid = v
Move through distance = Ax,
Area of cross-section = Ay
Height from the bottom = h;

At right side:

(for the same mass Am )
Pressure = P»
Veloceity of the fluid = v;
Move through distance = Ax;
Area of cross-section = A;
Height from the bottom = hy

We have
Pressure =P =TForce/Area =F/AorF=PA (D
Work done = W = force x displacement = F x Ax =PA Ax s (@)
Also S=Ax =vt n(3)
& p=m/V oV=m/p
as volume = area x length
so A.Ax =Avt=V=m/p 4
for the same mass flowing during time t, through both ends, the volume will be
Avit= Aawvat =Avt (5)
Now from equations (2) & (4) we have

W =PAvt
Or W=Pm/p .(6)
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Now we have

Kinetic energy = KE = /2 m v B )
& Potential energy =PE= mgh cn(8)
Taking mass (Am) of the fluid flowing from upper end to lower end as same.

Applying the Law of conservation of energy to this volume ((Am) of fluid:

Net Work done = change in KE + change in PE
Or Wagsseany - Wiswssag = (K Bipsee— KEwwee ¥ + 4 PEigper—PEiswer: } L9
From equations (6) to (9) we have
Pim/p +{(-P,)m/p} =%mv - %bmv? +mghy -mgh
Or m/p(Pi-P2)= m(% vt - v o+ ghy -ghy )
Or P-Py= p(¥%vii- ¥Wv® +gh-gh)
Or P-P = l/zp\«'zz - %pv;z + pghy - pgh
Or B+ Vzpvlz-\-pgm: P, +‘/sz22+ pg hy

Or P+ Y%pv'+pgh= constant

Which 1s Bernoulli’s Equation.
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24- MICROSCOPES

a) Magnifying glass {or Simple Microscope):

We define:

"An ordinary convex lens held close to the eye is called
magnifying glass".

ast d anc f distinct visio d):

The distance equal to 25 cm for a normal person to see
clearly an object. (fig. a)

Magnifying power (M) :

The ratio of the angle formed by the image of an object
seen through an eye piece at the eye to the angle formed by
the same object when both are placed at the least distance of
distinct vision from the eye.

Mathematically, p

M = e————

(o 8

sencese (l)

From the fig., we have
tan p = A‘;B' & tano(=-%§—
for small angle,
tanp=P= A;B' &tano(:d:%—
o= Lo - 82

In fig.(b), triangles A'O B' and
AOB are similar, so

.....__......A'B' = -.—d—. eesee (3)

A B p P
From egs. (2) & (3), we get Taylor's series for,
i) __d._ .ncon(4§
.- p sin & = & - et * —g? - e
From the equation, o2 eﬂ
o cos & =1 - —— g - sme
1/£=1/p + 1/q 21 41

since q = -d, as virtual image, for small & ,

i 1/£ = 1l/p - 1/d sin & = &
multiplying both sides by d, we get ot = 1
d/f =4d/p = 1 o sin B
68 dfp = I # G/F .unslB) tan @ = e T
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From equations (4) and (5), we get

o = F % veseasa(6)

So magnifying power of magnifying glass is inversely proportional
to f. Lesser the fotal length, greater will be its magnification.

b) Compound Microscope :

We :define:

"Compound microscope is a device used to produce a very large
magnification of very small objects. It consists of an objective
and an eye-piece".

Construction:
Compound microscope (fig.c)

Consists of two convex lenses. !
~-=--an objective of short focal !
length and small aperture and i
eye-piece of large focal length H
and large aperture as compared i %
to the objective.

Eye-piece
Objective

w

Working : Fig. (¢)
The object AB forms a real, inverted and enlarged image A'B'
of the object placed just beyond the focus of the objective.

The eye piece is used as a magnifying glass to see the final
image A''B'' at least distance of distint vision, d. It is virtual
and very much enlarged.

Magnifying power:

We define: Angle formed by final image

Angle formed at naked eye

B
(=4

Magnifying power

or M

From the figure, we have
Attt
tan f= fu AR

and (from fig. a), tandd = & = 'ig—
Aripgre
- oy iy ul —r———— 3 A'IB'I
So M= T T —o— AB
d

Al'IBIT AIB! = M
or M = —A'B' X_AB lx M2 ....(7)
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In eq. (7), M, is the magnification produced by the eyepiece and
Nb that produced by the objective.

Now, in the fig.(c), triangles A'O B' and A O B are similar, so

A'BTY _ _B'O
AB BO
q
s A'B'  _ o as(8)
AB P

which is the magnification produce by objective.

Now, magnification produced by the eye-piece (see eq.8),

- AUBYY d_
Ml _ A'B' e l .2 5 -----(9)
[f = f = focal length of eye-
From egs.(7), (8) & (9), we get o piece.

q
B o= =t L% .. (10)
P £,
Usually, the object AB lies very close to the focus of the
objective of focal length f, , SO

fo = P seevca s (ll)
And image A'B' lies very close to the eye-piece and image distance
q 1s approximately equal to the length L of the microscope tube, so
g = L ssess e (lZJ
From eqgs. (10}, (11) & (12), we get

e

5 d
M o= = {( £ =+ ﬁgg) sinsarew  (A3)
Y A fe

o

which is required formula for magnification of compound micro-
scopes From here we see that for high magnification the objective
and eye=piece should be of short focal length. However, f,< fe .
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25- TELESCOPES
We define:
Telescope :

"A device for collecting and producing an image of distant
objects".

. To see distant objects (e.g. distant galaxies) more amount of
light is needed. So the objective lens used in a telescope is of
large focal length with large aperture.

There are two types of telescopes:

a) Reflecting telescope:

An instrument which uses a concave mirror to bring light of
distant objects to a focus.

b) Refracting telescope:

An instrument which uses a lens to bring light of distant
objects to a focus.

Three types of refracting telescopes will be discussed below.
l. Astronomical Telescope:

We define:

"It is a telescope used to see heavenly bodies; it consists
of two convex lenses, one for objective and the other as an

eye-piece",
Details:

The objective is a o

convex lens. It has large J

focal length and large
aperture. To reduce chro-
matic and spherical aber-
rations, usually combinat-
ion of two lenses in
contact is used.

The eye-piece is
also a convex lens. It
has short focal length and small aperture. To reduce chromatic and
spherical aberrations, combination of two lenses separated by a
suitable distance is used.

The objective is mounted at one end of a tube and eye-piece is
mounted in a small tube to slide inside the bigger tube of the ocbjec#
tive.

Working:

The objective form a real, inverted and diminished image at
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its focus Bl of a distant object, in front of eye piece.

The distance between the eye-piece and this image is adjusted
within the focal length so that a magnified and virtual image is
formed at the least distance of distinct vision, If the image A B/
is made at the focus of eye-piece then the final image is formed
at infipity. It is called the telescope is focused for infinity.
Then

Length of the telescope = f, + fe s s L)
where £, = focal length of objective,
£, = " " " eye-piece.

Here the final image is formed inverted, which makes no difference
for astronomical purposes.

Magnifying power :

We define:

"It is the ratio of the angle formed by the image at the evye
as seen through the telescope to the angle formed by the object
with unaided eye, the object and image both lying at infinity".

Mathematicall c.
Y’ M = —;— sessnve (2)
(= r
In the figure,

LACB = & .ceceees (3)
3 LAzcle = LAlCJ.B_L = BE aaess )
Now for small angles A B -
& = tan€ = —E%EL_ wrsil5) ' Taylor';_serigf for,
AB sin e—_— 9—__5.' +§=—n¢-n
= Sk a
& o tan &, 5 G, o since ol B) o W T g? + S; b ol

From eqs. (2) to (6), we get

A B BlC o e for small €,

o i A sin & = O
M = '-;C;_ X g
RV -Ne i ) cos & = 1
BC _ sin B
or M = -#t— s L) L A 4
i L
When telescope is focused for infinity,
B,C = focal length of the objective = £, ....(8)
Cc = " L] " " - " —
& B,C eye-piece . (9)

From eqgs. (7), (8) & (9), we get cahn A10)
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Postulates of the Kinetic Theory of Gases

The kinetic-molecular theory of gases is based on the following main
assumptions first stated by Clausius.

l.

A chemically uniform gas consists of very small identical molecules.

2. The molecules are constantly in random motion, moving in all
directions with all possible velocities.

3. The molecules behave like smooth elastic spheres.

4. The energy of the gas is all kinetic.

5. The time spent in a collision is negligible as compared with that
during which the molecules are moving independently.

6. Between collisions the molecules move in a straight line with uniform
velocity.

7. The molecular radii are assumed to be negligibly small as compared
with the mean free path.

8. The average kinetic energy of gas molecules is proportional to the

absolute temperature.

27- Pressure of a gas from Kinetic Theory

Consider a cubical container of side L.
Area of one side = A,
& Volume=LA=L=V
Let a molecule is moving along X-direction,
Its velocity will be = v
Time interval = t

Distance traveled = v t
Distance traveled between

MY

<« —L—>

two consecutive collisions = 2L

[S=vt& t=S/v]

Time for one collision= 2L/ v s (D)

No. of collisions per second = 1 .=y
2L/ vy 2

No. of collisions in At=v . At/2L Z Z

Momentum of the molecule before collision = m v |,

Momentum of the molecule after collision =-mv |,

The change in momentum of the molecule =-m v .- (m v ;)

=-2mviy

b3

rate of change of momentum=-2mv |,
2L/ mv iy
2

S-MV .V T-MV |y

L L

Now we have
Force=f=ma=m (vr -v)
t

. (2)

=m ( vy - vi) = Rate of change of momentum c(4)

t
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from equations (3) & (4)
F=-mv 1__g
I
Where I is the force exerted by the wall on a molecule

So force exerted on the wall by a moleule is

-F=-mv,;’ or F =mv,’ e ()
1L, IL;
And total force exerted on right wall by all the molecules, Fy , will be
F=m sz,L +m V?'L,L + m vzg_ o + m VE,]i
L IL; IL; 5
or F=mZvi e (6)
L

So pressure p on the wall will be

I

p = m/L)Emvi /L> [p=F/A & A=L7

]

or p = (m/L)Tmvi e (1)

Now we define
mean square velocity < >, as

2 2 2 2
WP = VI PV PVt + Vi
N

or <V2x > =3 vz,x /N
or Tvh, =N<v o> e (B)
From equations (7) & (8), we have
P == (m/L%) N> )]

We have
A2 = eyl 2 2
<NV > = <y >+ <y y> v, >
as particle is moving in random direction so

> = A = o= 13> e (10)
from equations (9) & (10), we have

= (mN/L*)1/3 <> e (11)
MN/V)1/3<v? > [vol =V =1%]

MN/Vym 1/3 <v? >

= @2N/V)¥%ml/3<v’>

=]
|| I

p = (23 N/V)<I/2mv’ > e (12)

or p = 2/3(N/V)<KE> o (13)
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Defining
N, = No. of molecules = N/V
Volume
& <1/2mv> = (KB

from equations (12) & (14), we have
p = 23N, (KE)a

it implies that
p o (KB

Defining temperature T :

We have from previous knowledge
pV = nRT
or p = nRT/V
from equations (12) and (17), we have
nRT/V = (2/3 N/V) <12 mv* >
or T = 2/3 (N /nR) <1/2 mv* >

or T (KE)av

Derivation of gas laws from kinetic theory of gases:

We have from previous knowledge [ eq (12)],
p = 23 N/V) <12 mv* >

If average KE =<1/2 mv* > is constant, then

pV = (2/3 N) x constant = constant
which is Bovles’s Law.
Now fromeq. (1)

V = (23N/p)<1/2mv?>
If pressure p is constant, then

V = constant x <1/2 mv’ >

or V (KE)ay

As (KE), is measure of Temperature T, so

v T

which is Charles’ Law.

(7

e (18)

v (19)
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28- Thermal Expansion

To prove B = 3w

We define.
B=_AV.
Vo AT
or AV =BiNeAT )

Considering a rectangular parallelepiped with dimension L, . L, and Ls , then
Vo = L| 5 Lz i L3
For linear expansion, we have

L =L,(1 + aAT)

So the length of each side changes and the new volume will be b

Vo + AV = L (1 +aAT) x Ly (1 + aAT) x Ls (1 + aAT)
LiLaLs (1+aAT)
=V, (1 +aAT) [ ey b lis ]
[(a +Db) =a’+3a’b+3ab’ +b"]
=V, {1 + 31 (@ AT) + 3(1)(c AT + (o AT}
=V, {1 + 30 AT + 362 AT? + o AT}
since o AT is very small, neglecting its higher powers, we get

Il

Vot AV =V, {1 + 3a AT}
or V,+AV =V, + Vix 30 AT
or AV = V,x3a AT
or AV =3 a V, AT e (2
Comparing equations (1) and (2), we get

= et

which is required proof.
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29- First Law of Thermodynamics

Statement

“The heat energy supplied to a system is equal to the increase in the internal energy of the
system from an initial value U; to the final value Uy plus the work done by the system on its
surroundings”. Mathematically

AQ = AU + AW v (1)

Explanation

Eq. (1) defines the change in the internal energy of a system. It is equal to the energy
flowing in as heat energy minus the energy flowing out as work.

The first law of thermodynamics indicates that there exists a useful state variable of every
thermodynamic system called the internal energy.

Applications:

1.Isobaric Process:
“The process in which the pressure of the system remains constant™.

Gas-cylinder system p-V diagram
Kobat,
F&—' A t (p, ¥y ity )
______ AV PY s
T ( PJVM 'l )

V—

Applying the equation in this isobaric process:

Work = force x displacement
W =Fxd [p=FA

AQ = AU + AW or W =pAd Jor F =pA
or W=pV [Axd=V
or AQ = AU + pAV or AW =pAV

2. Isochoric Process:
“The process in which the volume of the system remains constant™.

The System p-V diagram
ré"l Fz 7 V) TL
WA A5 R /]\
P A/S 2 Cfxﬂ,
Pl 2 V‘) 77
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Applying the equation,
AQ = AU + AW AW =0

or AQ = AU

3. Isothermal Process:
“The process in which the temperature of the system remains constant”.

The System p-V diagram
pin T
i A B 0 oYy )MD:@?«LAM
LE 5 )

/Hwt Lageh N NA \ N —7

Applying the equation,

AQ = AU + AW AU =0

or AQ = AW

4. Adiabatic Process:
“The process in which no heat enters or leaves the system”.

The System p-V diagram
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Applying the equation,

AQ = AU + AW AQ =0
0 = AU + AW
or AW = -AU

Also in adiabatic changes the following relation is found to be true,

p V' = constant y = Cp /Cy

5. Heat Capacity of an Ideal Gas:
We have from previous knowledge

AQ = mcAT
for molecular specific heat
AQ = nCAT

yrmrsrrrr R

At constant volume:
Heat energy used in raising
AQ = nCy AT = the temperature through AT
[pV =nRT]
& Heat energy used in doing = AW = pAd = pAV = nRAT
the external work ‘

Al constant pressure:
Heat energy used in raising Heat energy used in
AQ = nC, AT = the temperature through AT +  doing the external work
from equations (1), (2) & (3), we get
nCp AT = nCy AT + nRAT
or C, =Cy +R

It implies Cp > Cy

-
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30- Second Law of Thermodynamics
Lord Kelvin’s Statement

“No heat engine operating continuously in a cycle, can extract heat from a heat reservoir and
convert all of it into work™.

b HTR o
a,‘#/
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Clausius Statement

“Itis impossible to cause heat to flow from a cold body to a hot body without the expenditure
of energy™.

BOTH STATEMENTS ARE EQUIVALENT

It can be proved by showing that, if either statement is false the other statement must be false
also.

Suppose that Clausius statement were false so that we could have a refrigerator operating
without doing any work on it. We could use an ordinary engine to remove heat from a hot
body. to do work and to return part of the heat to a cold body.

By connecting our perfect refrigerator into the system, this heat would be returned to the hot
body without the expenditure of any work. It violates the Kelvin’s statement. If we reverse
this reasoning, even then the net result is a transfer of heat from cold to hot body without
expenditure of work. This is the violation of Clausius statement.

HTR /
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31- Entropy & Second Law of Thermodynamics

Entropy:
“The physical quantity which describes the ability of a system to do work and it also

describes disorder of a system”. Mathematically

AS = AQ/T

Entropy is a state variable. It is a measure of disorder. The more disordered the state of a
system, the larger will be its entropy.

Another form of Second Law of Thermodynamics

“If an isolated system undergoes change. it will change in such a way that its entropy either
remains constant or it tends to be maximum”.

Relating the both
In the definition and application of the Second Law of Thermodynamics, Clausius was the

first to introduce a new physical quantity, called entropy, which has proved to be of great
importance not only in the further development of thermodynamics but also in the
recognition of a fundamental law of Nature. The problem of continuous conversion of heat
into work, with which the second law deals, is largely dependent on the direction rather than
the actual amount of energy change in a system. We find that the new concept, entropy, can
cover that additional factor. In the application of the second law, the change of the thermal
state of the working substance is more important than the general idea of more convertibility
of heat in work, since it is the working substance alone which undergo a thermo-dynamical
change in the process, so entropy can efficiently define the thermo-dynamical state of any
working substance. Also entropy deals with the physical property of a substance that can
remain constant in adiabatic change.

The above arguments lead us to restate second law of thermodynamics in terms of entropy.
That is, the entropy of the Universe during any process either remains constant or increases.
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