WITH ANSWERS & SOL'N HINTS

B I S E MODEL PAPER

Inter Part-I (2006-2008)

MODEL PAPER "PHYSICS"

Intermediate Part - I Examination, 2007

(Academic session 2006 - 2008)
Roll No.

In Figures _ In Words _

	OBJECTIVE
Time .	20 minutes Marks: 17
Note:	Write your Roll No. in the space provided. Cutting, overwriting erasing, using lead pencil will have no credit.
Q.No. 1	Each question has FOUR possible answers. Select the correct answer and encircle it.
	The dimensions of moment of inertia are (a) ML^{-2}
	The resultant of two forces 10N and 8N cannot be (a) 2N (b) 18N (c) 10N (d) 12N None of these $\hat{i} \cdot (\hat{j} \times \hat{k}) = -$ [$\hat{j} \times \hat{k} = \hat{i} \cdot \hat{j} \cdot \hat{i} = 1$]
(iii)	(a) \hat{i} (b) \hat{j} (c) \hat{k} (d) 1
(iv) (a)	The velocity – Time graph is parallel to Time – axis, the acceleration of the moving body is Positive (b) Negative Zero (d) Maximum
(v)	A body of weight 5N falls through a height of 10m. Its energy 5m above ground is (a) 25N (b) 50N (c) both 'a' and 'b' (d) 75N
(vi)	The out of man in an elevator moving down with an acceleration 9.8ms ⁻² With become (a) half (b) double (c) unchanged (d) zero
(vii)	The moment of linear momentum is called (a) Impulse (b) Torque (c) Angular momentum (d) Couple
(viii)	High concentration of red blood cells increases the viscosity of blood from (a) 2 - 3 times that of water (b) 3 - 4 times that of water (d) 4 - 5 times that of water

(ix)	The product of time-period and freq (a) 3 (b) 2	uency is equal to (d) 0
(x)	The velocity of sound in Hydrogen conditions is	as compared to Oxygen under similar
	(a) $\frac{1}{4}$ the velocity in O_2	6 Four times the velocity in O ₂
A.	(c) $\frac{1}{2}$ the velocity in O ₂	(d) Two times the velocity in O ₂
(xi)	When two notes of frequencies f_1 formed. If $f_1 > f_2$, then frequency of	and f ₂ are sounded together, beats are beats is
	(a) $f_1 + f_2$ (b) $f_1 - f_2$	(c) $\frac{f_1 + f_2}{2}$ (d) $\frac{f_1 - f_2}{2}$
(xii)	Light from sun reaches the earth in the	he form of
	(a) cylindrical wave front	(b) spherical waye front
	plane wave front	(d) all of the above
(xiii)	dark due to the reason that (a) The part of ray reflected from up	when observed with reflected light is per surface of convex lens undergoes a
	phase shift of 180°.	
		f air film undergoes a phase shift of 180°.
	The reflection from lower surface o	f air film undergoes a phase shift of 180°.
9.	(d) ali of above	
(xiv)	A double convex lens acts as a divergi	ng lens when the object is
	a Inside the focus	(b) away from 2f
	(c) between f and 2f	(d) on 2f
(xv)	Least distance of distinct vision	
N	(a) Increases with increase of age.	Remain same with increase of age.
	(c) Decrease with increase of age.	(d) all of these
(xvi)		of the nature of the substance used in
	(a) Centigrade scale	(b) Fahrenheit scale
	(c) Kelvin or absolute scale	d Thermodynamic scale
(xvii)	Which of the following process is irrev	versible
	(a) slow compression of an elastic sp	
	(b) Slow evaporation of a substance i	
	(c) Slow compression of a gas.	
	A chemical explosion	· · · · · · · · · · · · · · · · · · ·

MODEL PAPER "PHYSICS"

Intermediate Part - I Examination, 2007

(Academic session 2006 - 2008)

SUBJECTIVE

Time: 2.10 Hours

Marks = 68

Note: Attempt any TWENTY TWO (22) questions from Section - I and any THREE questions from Section - II.

SECTION-I

Q.No. 2 Write short answers to any twenty two of the following questions.

 $(2 \times 22 = 44)$ Marks

Name the two physical quantities which have the same dimensional formula. Write their dimensions also. Work = $W = F \cdot A = --- [ML^2 T^{-2}]$ Also Mann & Impulse. To que = $C = F \cdot A = --- [ML^2 T^{-2}]$ Find the dimensions of η in the relation $F = 6\pi\eta rv$, r = radius and v = velocity. [Text Ex = 1.6] (i) (ii)

Write the name of two supplementary units and define than. [Radian & Steradian] (iii)

In Fig. which force will give max. work and why? (iv)

Given that $\vec{A} = \hat{i} - 2\hat{j} + 3\hat{k}$ and $\vec{B} = 3\hat{i} - 4\hat{k}$, find the length of the projection of \vec{A} on \vec{B} will be $\vec{A} \subset S = \vec{A} = \vec{B} = \vec{A} = \vec{A}$

Using 2nd condition of equilibrium. $\angle Y = 0 & -R_1 \times AD - 2 w \times CD - 3 w \times BD = 0$

$$\begin{array}{c} V_{f} = V_{c} + \alpha t \\ 1S = 20 + \alpha x 3 \\ \alpha = -\frac{5}{3} \\ F = m \alpha = -1500x \frac{5}{3} \\ = -2500 \text{ M} \end{array}$$

$$\begin{array}{c} \overline{R}_{1} = ? \quad \overline{R}_{2} \\ \overline{R}_{1} = ? \quad \overline{R}_{2} \\ \overline{R}_{3} = ? \quad \overline{R}_{3} \\ \overline{R}_{1} = ? \quad \overline{R}_{2} \\ \overline{R}_{3} = ? \quad \overline{R}_{3} \\ \overline{R}_{1} = ? \quad \overline{R}_{2} \\ \overline{R}_{3} = ? \quad \overline{R}_{3} \\ \overline{R}_{1} = ? \quad \overline{R}_{2} \\ \overline{R}_{2} = ? \quad \overline{R}_{3} \\ \overline{R}_{3} = ? \quad \overline{R}_{2} \\ \overline{R}_{3} = ? \quad \overline{R}_{3} = ? \quad \overline{R}_{3} \\ \overline{R}_{3} = ? \quad \overline{R}_{3} \\ \overline{R}_{3} = ? \quad \overline{R}_{3} = ? \quad \overline{R}_{3} \\ \overline{R}_{3} = ? \quad \overline{R$$

Mass = 1500 kg

after 3 sec

In figure the velocity of car is reduced due to the retarding force \overrightarrow{F} , find its value.

Define impulse and show that how it is related to linear momentum? $F = ma = m \frac{(v_f - v_i)}{t} = \frac{mv_f - mv_i}{t} \text{ fr. } \text{ Impulse} = Fxt = mv_f - mv_i.$ (viii)

(ix) In figure, maximum height and horizontal range are equal, find the angle of projection of projectile.

Prove that power is a scalar product of force and velocity $P = \frac{dW}{dt} = \vec{F} \cdot \vec{k} d = \vec{F} \cdot \vec{k} \vec{l}$ (x)

(xi) In figure, there are three paths between points A and B on which path the work done in moving a body from A to B will be maximum or remain same.

(xii) A body of mass m is falling down with velocity V₁ and at a height h₁ from a point P. If there is no frictional force, write the work - energy Eqn for the body at point Q.

(xiii) Figure shows a mass m attached to a massless rod at 0 (pivot point). A force F is applied on it as shown. Find the value of TORQUE in terms of moment of inertia I

A 1000 kg car traveling with a speed of 144 kmh⁻¹ round a curve of radius 100m. Find the necessary centripetal force. $F_e = \frac{mv^2}{\lambda} = \frac{100 \times (144 \times 13^2)}{60 \times 60} = -1.6 \times 10^4$ Describe what should be the minimum velocity for a satellite, to orbit close to the earth around it. $A_e = g = \frac{v^2}{\lambda} \Rightarrow v = \sqrt{3}\lambda = \sqrt{g}R = 7.9 \text{ km s}^{-1}$ (xiv)

(XV)

State the Torricellis' Theorem with diagram. $v_2 = \sqrt{29 (k_1 - k_2)}$ (xvi)

Explain the difference between laminar flow and Turbulent flow. See Definitions (xvii)

Two row boats moving parallel in the same direction are pulled towards each others. Explain? See "Short Ans. to Questine" page - 19 (xviii)

	7 W. done = PEe = Far & coso = (0+Kx0) x = 1/2 kx02	
(xx)	A mass m is attached with a spring and pulled slowly through x ₀ against the	
	elastic resoring force F, using Hook's Law, calculate the work done in	
(xxi)	displacing the mass and hence calculate elastic PE of the spring.	
. P	Explain S.H Motion for a body of mass in, attached with a spring of spring constant k. See "Auxiliary Notes" Article No. 2 (Simple H. Motion)	
(XXII)	Explain the terms crest, trough, node and antinode. See "Short Are to Questions" page -	24
(xxiii)	Name the three important cases of super position of two waves when act simultaneously upon the particles of medium. I-Alexferance, 2-Beats, 7-Stationary Warre	es
(xxiv)	What is Doppler effect? See "Core PHYSICS" page - 14	
(XXV)	Draw the diagram of Michelson's Interferometer and write the equation by which we can find the displacement L of the mirror. See Gen 84751Cs \$ 9(11)	
(xxvi)	Define Grating element. See "Awarliany Notes" & 11 (Diffraction Grating)	
(xxvii)	How is the distance between interference fringes affected by the separation between the slits of Young's Experiment? See 45hort Ans. to huestone begge 26	
(xxviii	Draw the Ray-diagram of a compound Microscope. See Core PHYSICS page - 15	
(xxix)	How the magnification of (i) Simple microscope and (ii) Astronomical Telescope changes by descreasing the focal length of an eye piece, Explain.	
(xxx)	Name the three types of optical fibres. Cose PHYSICS page - 18	
(xxxi)	State Ist law of Thermodynamics, with sign convension. (See PHYSICS been 20	
(xxxii)	Why Cp > Cv? "Core PHYSICS" page-20 [In Cp more Q is used for AW]	
(xxxiii)	Explain the principle of Heat engine with diagram. "Gen PHYSICS" & [1 (iii)	
	SECTION - II	
Note	Attempt any three questions. All questions carry equal marks.	
Note	Attempt any three questions. All questions carry equal marks. $(3\times 8=24)$	
Note	$(3 \times 8 = 24)$ (a) Define VECTOR PRODUCT of two vectors with two examples. State	
n a	(a) Define VECTOR PRODUCT of two vectors with two examples. State right hand rule. Show that $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$ Text back Pegg 34-36	
n a	$(3 \times 8 = 24)$ (a) Define VECTOR PRODUCT of two vectors with two examples. State	
n a	(a) Define VECTOR PRODUCT of two vectors with two examples. State right hand rule. Show that $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$ Text back Pegg 34-36	
Q.No.	 (a) Define VECTOR PRODUCT of two vectors with two examples. State right hand rule. Show that \$\overline{A} \times \overline{B} = -\overline{B} \times \overline{A}\$ Text bank pegg 34-36 (b) Find the angle between two vectors, \$\overline{A} = 5\overline{i} + \overline{j}\$ and \$\overline{B} = 2\overline{i} + 4\overline{j}\$. (a) Derive an expression for CENTRIPETAL Force. *Cone PHYSICs** pagg - 7 (b) What is the least speed at which an aeroplane can execute a vertical 	
Q.No.	(a) Define VECTOR PRODUCT of two vectors with two examples. State right hand rule. Show that $\overrightarrow{A} \times \overrightarrow{B} = -\overrightarrow{B} \times \overrightarrow{A}$ Text book Page 34-36 (b) Find the angle between two vectors, $\overrightarrow{A} = 5 \hat{i} + \hat{j}$ and $\overrightarrow{B} = 2 \hat{i} + 4 \hat{j}$. (a) Derive an expression for CENTRIPETAL Force. *Cone PHYSICS** page -7 (b) What is the least speed at which an aeroplane can execute a vertical loop of 1.0 km radius so that there will be no tendency for the pilot to fall down at the highest point. $A_e = g = \frac{1}{2} + \frac{1}{2$	13-1
Q.No.	 (a) Define VECTOR PRODUCT of two vectors with two examples. State right hand rule. Show that \$\overline{A} \times \overline{B} = -\overline{B} \times \overline{A}\$ Text bank pegg 34-36 (b) Find the angle between two vectors, \$\overline{A} = 5\overline{i} + \overline{j}\$ and \$\overline{B} = 2\overline{i} + 4\overline{j}\$. (a) Derive an expression for CENTRIPETAL Force. *Cone PHYSICs** pagg - 7 (b) What is the least speed at which an aeroplane can execute a vertical 	15
Q.No. 3	(a) Define VECTOR PRODUCT of two vectors with two examples. State right hand rule. Show that $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$ Test book Pegg 34-36 (b) Find the angle between two vectors, $\vec{A} = 5\hat{i} + \hat{j}$ and $\vec{B} = 2\hat{i} + 4\hat{j}$. (a) Derive an expression for CENTRIPETAL Force. *Cone PHYSICS** page -7 (b) What is the least speed at which an aeroplane can execute a vertical loop of 1.0 km radius so that there will be no tendency for the pilot to fall down at the highest point. $\vec{A}_{e} = g = \frac{1}{2} \Rightarrow v = \int g x = \sqrt{9.8} x x x x x x x x x x $	
Q.No. 3	(a) Define VECTOR PRODUCT of two vectors with two examples. State right hand rule. Show that $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$ Text book Page 34-36 (b) Find the angle between two vectors, $\vec{A} = 5\hat{i} + \hat{j}$ and $\vec{B} = 2\hat{i} + 4\hat{j}$. (a) Derive an expression for CENTRIPETAL Force. "Cone PHYSICS" page -7 (b) What is the least speed at which an aeroplane can execute a vertical loop of 1.0 km radius so that there will be no tendency for the pilot to fall down at the highest point. $\vec{A}_{e} = \vec{g} = \vec{b} + \vec{b} = \vec{b} + \vec{c} = \vec{c} + \vec{c} = \vec{c} + \vec{c} = $	n5 ⁻¹
Q.No. 3 Q.No. 4 Q.No. 5	(a) Define VECTOR PRODUCT of two vectors with two examples. State right hand rule. Show that $\overrightarrow{A} \times \overrightarrow{B} = -\overrightarrow{B} \times \overrightarrow{A}$ Test book Pegg 34-36 (b) Find the angle between two vectors, $\overrightarrow{A} = 5\overrightarrow{i} + \overrightarrow{j}$ and $\overrightarrow{B} = 2\overrightarrow{i} + 4\overrightarrow{j}$. (a) Derive an expression for CENTRIPETAL Force. *Cone PHYSICS** pagg -7 (b) What is the least speed at which an aeroplane can execute a vertical loop of 1.0 km radius so that there will be no tendency for the pilot to fall down at the highest point. $\overrightarrow{A}_{e} = 9 = 1 - 10$ (a) State and prove Bernoullis Theorem. *Cone PHYSICS** pagg -10 (b) How large must a heating duct be if air moving 3.0 ms ⁻¹ along it can replenish the air in a room of 300 m ³ volume every 15 min? *Partial Solum** P-12 (a) Give drawback of Newton's formula for velocity of sound. How was	n 5 ⁻¹
Q.No. 3 Q.No. 4 Q.No. 5	(a) Define VECTOR PRODUCT of two vectors with two examples. State right hand rule. Show that $\vec{A} \times \vec{B} = -\vec{B} \times \vec{A}$ (b) Find the angle between two vectors, $\vec{A} = 5\hat{i} + \hat{j}$ and $\vec{B} = 2\hat{i} + 4\hat{j}$. (a) Derive an expression for CENTRIPETAL Force. "Core PHYSICS" page -7 (b) What is the least speed at which an aeroplane can execute a vertical loop of 1.0 km radius so that there will be no tendency for the pilot to fall down at the highest point. $\vec{A}_{e} = g = \frac{1}{2} \Rightarrow \vec{V} = \int \vec{A}_{e} = \int \vec{A}_{e} \cdot \vec{A}_{e} \cdot \vec{A}_{e} \cdot \vec{A}_{e} = 0$ (a) State and prove Bernoullis Theorem. "Core PHYSICS" page -10 (b) How large must a heating duct be if air moving 3.0 ms ⁻¹ along it can replenish the air in a room of 300 m ³ volume every 15 min? "Partial Sola" per -12 (a) Give drawback of Newton's formula for velocity of sound. How was corrected by Laplace. "Gen PHYSICS" & Bli) (b) Find the temperature at which the velocity of sound in air is two times	3
Q.No.4 Q.No.5 Q.No.6	(a) Define VECTOR PRODUCT of two vectors with two examples. State right hand rule. Show that $\overrightarrow{A} \times \overrightarrow{B} = -\overrightarrow{B} \times \overrightarrow{A}$ Text book Pegg 34-36 (b) Find the angle between two vectors, $\overrightarrow{A} = 5\overrightarrow{i} + \overrightarrow{j}$ and $\overrightarrow{B} = 2\overrightarrow{i} + 4\overrightarrow{j}$. (a) Derive an expression for CENTRIPETAL Force. "Cone PHYSICS" pagg -7 (b) What is the least speed at which an aeroplane can execute a vertical loop of 1.0 km radius so that there will be no tendency for the pilot to fall down at the highest point. $A_{e} = g = \frac{1}{4} \Rightarrow V = \int gA = \int gA \times I \times I \cos \theta = -e g = gA$ (a) State and prove Bernoullis Theorem. "Cone PHYSICS" Page -10 (b) How large must a heating duct be if air moving 3.0 ms ⁻¹ along it can replenish the air in a room of 300 m ³ volume every 15 min? "Partial Solm" P-12 (a) Give drawback of Newton's formula for velocity of sound. How was corrected by Laplace. "Gem PHYSICS" & gli) (b) Find the temperature at which the velocity of sound in air is two times its velocity at 10°C. Text book Solves Exa g. 1 Page 171	n 5