
REFERENCE MANUAL

Tables of Physical & Chemical constants, Mathematical functions, and useful information

Ross Nazir Ullah

BLANK PAGE

PREFACE

The vast field of Science today demands some reference book to be familiar with some notations not included in the prescribed Science text books. This book is specially prepared for F.Sc. and B.Sc. Physics students and teachers. I have included only those, references and informations which we met across during the study of text books.

Some informations and references are included being interesting and informative. Major portion of this book is taken from my personal collection. It is hoped that it will be useful for science teachers and students. Comments and suggestions for further improvements will be accepted with gratitude.

Govt. College, Shakargarh. January, 1902.

ROSS MAZIR ULLAH

Contents

Time Scale	6
Energy Sources (Time Scale)	7
Information Technology (Time Scale)	7
Roster of Names	8
Noble Prize Winners in Physics	15
The Great Philosophers	19
Origin of few Physics Words	20
Foreign Words used in Science	21
The Elements	24
Some characteristics of common glasses	26
Periodic Table of the Elements	27
Basic dimensions and Units	28
Tables of weights and measures	29
Conversion factor for SI & CGS Units	. 31
Conversion factors—2	34
Equivalence of some measurements	35
Energy, Work, Heat	36
Electromagnetic Spectrum	37
Spectrum of visible portion	37
Radio and TV waves	37
Luminous Efficiency	38
Length of light waves	38
Electromagnetic Spectrum (specific character)	38
100-year Journey toward Absolute zero	39
Cooling Agents	39
The order of magnitude	40
Some temperatures	40
Elementary Particles	41
Fundamental Forces	42
The range of elementary particle energies	43
Planets of Solar System	43
Fundamental Constants	44
Standard Prefixes	45
Beaufort Scale	46
The Earth	47
The 24 Nearest Stars	48
Important Space Probes	49
The most important manned space flights	50
Crewed space flights	51

Mathematical Signs and Symbols	52
Greek Alphabets	52
Trigonometry	53
Exponential Function	55
Calculus	56
Standard formulae for Differentiation & Integration	57
Common Logarithms	58
Natural Trigonometric Functions	59
Resistor and Capacitor colour codes	60
List of Abbreviations	61
Bibliography	62

1 T

TIME SCALE

A-bomb 1945 airciaft 1903 air, milatary 1908 air, air force 1913 Alchemy 1000 Alphabet 3800 B.C. antibiotics 1940 antimatter- (discovered) -1932 Apollow (moon flights) -- 1969 atomic nucleus(discovered) - 1911 automobile 1885 hallistic missiles 1944 biology(modern) - 1953 blood circulation(discovered) - 1628 bomber warfare 1936 cholera epidemics - 1817 clock work(escapement) - 725 communications-satellite - 1965 compass(navigational) - 1115 computer 1943 DNA-structure(discovered) - 1953 electrical energy 1881 electromagnetism(theory) - 1864 fertilizers, chemical 1913 fibres(wholly synthetic) - 1936 fossil-energy revolution - 1825 gas(natural) 1821 gene structure 1953 Geology (modern) - 1967 germ theory of disease - 1863 glass(man-made)-1400 B.C. Gravity, Law of 1687 Great wall of China - 214 B.C. Gun power 1356 H- bomb - 1953 holograms - 1963 influenza 1564 Lazer - 1960 machine gun warfare - 1898 magnetic compass- 1115 Manned spaceflight 1961 Mars landers(Viking 1 & 2) - 1976 measles 162 A.D. meson theory 1934

micro processor - 1971 microscope - 1660 missiles - 1943 modern Science formulized - 1662 moon landings 1969 motion pictures - 1895 neutron discovered-1932 Nuclear energy - 1942 outer-planets mission (Voyager 1 & 2) - 1977 paper - 100 A.D. phonograph - 1877 Physics - 1604 Plastics -- 1910 Quantum mechanics - 1926 radar -- 1939 radio - 1901 radioactivity - 1896 rail roads - 1825 relativity - 1905 Renaissance - 1500 rockets - 1926 rubber - 1872 satellite, man-made - 1957 small pox epidemics - 251 sound recording - 1901 spacecraft - 1957 sputnik - 1957 street cars -- 1881 submarines - 1914 synthic dyes - 1865 telegraph - 1844 telephone - 1878 telescope - 1609 television boom - 1950 transistor - 1948 typewriter - 1867 vaccination - 1796 vitamins - 1912 windmills -- 600 writing - 3500 B.C. x-rays discovered - 1895 yellow fever - 1648 zero ("Arabic") - 683

Energy Sources(Time Scale)

Human muscle: Prehistoric Fire wood: Prehistoric Lamps: Prehistoric Solar energy: Prehistoric

Wind energy: estimated 4000 B.C. Animal muscle: 4000 B.C.

Natural gas: 900 B.C. Water energy: 30 B.C.

Coal: 1 B.C.

Wind Mill: 600 A.D. Explosive: 900 A.D.

Steam energy: 1712 A.D. Coal gas (town gas): 1792 Fossil-energy revolution: 1825 Petroleum industry: 1857 Electrical energy: 1881 Internal combustion

engine (for automobile etc.): 1885

Nuclear energy: 1942

Lasers: 1960

Costly energy (oil from different

offshore sources): 1973

Information Technology(Time Scale)

Maps & diagrams:

2400 B.C. (Mesopotamia) seals: 2700 B.C. (Mesopotamia) envelopes: 3600 B.C. (Mesopotamia) writing: 3500 B.C. (Mesopotamia) Egyptian hicroglyphics: 3000 B.C.

alphabet: 1800 B.C. (Sinai) Chinese writing: 1500 B.C.

(Shang)

coins: 600 B.C. (Anatolia) paper: 100 A.D. (China)

modern numerals: 680 (Southeastern

priting: 700 (China) paper money: 910 (China) printing press: 1455 (Germany) photography: 1839 (France)

electric telegraph: esp. 1844

S. Morse (U.S.)

telephone: 1878 (U.S.) punched-card data processing:

esp. 1890 (U.S.) sound recording: esp.1901 (U.S.)

radio: esp. 1901 (Italy) electronics: 1906 (U.S.) radio broadcasting boom:1922

(Worldwide)

computer: 1943 (Britain) television boom: esp. 1950 (U.S.) holography: esp. 1963 (U.S.)

communications satellite:esp.1965(U.S.)

microprocessor: 1971 (U.S.) optical-fiber links:1980(various

Roster of Names

Thales (640? to 546 B.C.) Greak philosopher. Recognized certain aspects of static electricity. Pythagoras of Samos (580 to 500 B.C.)

Founder of the Pythagorean school of philosophers. Investigate Pythagorean theorem of geometry. Democritus (about 470 B.C. to 370 B.C.)

Probably the greatest Greek physical philosopher; explained origin of world by eternal motion of infinite number of invisible and indivisible bodies, atoms. Plato (427 to 347 B.C.) One of the greatest of the Greak philosophers. Aristotle (384 to 322 B.C.)

Greak philosopher; "....one of the greatest thinkers and scientific investigator the world has ever seen"; logic, ethics, metaphysics, psychology, zoology, astronomy. Written the first textbook in Physics. Archimedes (287 to 212 B.C.)
Greak philosopher; from the Alexandrian school; Physics and geometry; Archimedes' principle. Claudius Ptolemy (C. A.D. 90 to 168) Egyption astromer, geographer, and mathematician; believed the earth was fixed center of solar system with stars and planets revolving about it. Alhozen (965 to 1038) Muslim scientist. Discovered the laws of reflection. Averroes (1125 to 1198) Islamic philosopher. Fanciscan Roger Bacon (1214 to 1294)

Experimental scientist. Taught that belief should be based on observation and experimentation rather than on authority. Leonardo da Vinci (1452 to 1519)

Great accomplishments in practically every field of the arts and science. Nicolaus Copernicus (1473 to 1543)
Polish astromer; Copernican theory of solar system as accepted today. Tycho Brahe (1546 to 1601) Great observer. Francis Bacon (1561 to 1626)
English statesman, philosopher, and essayest; theories on nature Galileo Galilei (1564 to 1642)

Italian astronomer; falling bodies; the laws of the pendulum; accelerated motion; the "leaning tower" experiment. German mathematician and astronomer; explained tides are caused by the moon's attraction; noted mostly for his three laws of planetary motion. Willebrord Snell (1591 to 1628)
A Dutch scientist; Snell's law.

Evangelista Torricelli (1608 to 1647)

A pupil of Galileo.

Blaise Pascal (1623 to 1662)

Son of Etienne Pascal. French mathematician and philosopher; investigations mostly in hydro-dynamics; discovered relationship between altitude and height of mercury column; Pascal's principle in fluids.

Robert Boyle (1627 to 1691)

British physicist and chemist; Boyle's law in 1662.

Christian Huygens (1629 to 1695)

Dutch physicist and mathematician; supported wave theory of light as opposed to Newton's corpuscular theory; proposed Huygen's principle of wave propagation.

Robert Hook (1634 to 1703)

English chemist and physicist; may have invented balance spring in watches; Hooke's law of elasticity.

Sir Isaac Newton (1642 to 1727)

English mathematician and physicist; noted, among many other things, for the three laws of motion, the law of Universal gravitation, and his ideas concerning the nature of light propagation; believed in the corpuscular theory as opposed to the wave theory.

Edmund Halley (1656 to 1742)
English astronomer and mathematician; in 1682 discovered comet named after him; predicted its return in 1759; published first map of winds on earth's surface.

Brook Taylor (1685 to 1731)
English jurist and mathematician.

Gabriel Daniel Fahrenheit (1686 to 1736)

German physicist; the Fahrenheit scale of temperature.

<u>Daniel Bernoulli</u> (1700 to 1782)

<u>Swiss physicist; Bernoulli's theorem; worked in hydrodynamics and gas theory.</u>

<u>Lagrange</u> (1736 to 1813)
Worked in theoretical mechanics.

Henry Cavendish (1731 to 1810)

Eccentric aristocrat, a millionaire; British chemist; determined value of G, gravitational constant; computed density of the earth; a superb experimenter.

Charles A. Coulomb (1736 to 1806)

French scientist and inventor; Coulomb's law of force between magnetic poles and between electric charges; the Coulomb named after him.

James Watt (1736 to 1819)
Scottish engineer; investigations in heat, primarily heat engines; the Watt is named after him.

Count Alessandro Volta (1745 to 1827)

Italian physicist; investigations in current electricity; discovered decomposition of water by electricity; the volt named in his honour.

 $\frac{\text{John Dalton}}{\text{English chemist}}$ and physicist; noted chiefly for his views on atomic theory; his research related to gases, elasticity of vapours, and effect of heat in gases.

Thomas Young (1733 to 1829)

English physicist and physician; noted for discoveries in light; advocate of wave theory of light; Young's experiment in interference established our idea that light travels as a wave motion.

Malus (1775 to 1812)

Discovered the phenomenon of polarization of light by reflection.

Marie Andre Ampere (1775 to 1836)
French physicist and mathematician; investigations in electricity and magnetism; ampere named after him.

Karl Friedrick Gauss (1777 to 1855)

German mathematician; studies in electricity and magnetism; the gauss named in his honour.

Hans Christian Oersted (1777 to 1851)

Danish chemist and physicist; investigations on the magnetic effects of currents; sometimes regarded as father of electromagnetism; unit of magnetic field intensity, the oersted, named after him.

Sir Humphrey Davy (1778 to 1828)
English chemist; experiments in heat (ice experiment); the Carbon arc and the safety lamp.

William Prout (1785 to 1850)

English physician and chemist. First to suggest (1816) the hypothesis that all atomic weights are multiples of that of hydrogen, and that hydrogen is the fundamental element of which all others are composed.

George Simon Ohm (1787 to 1824)

German physicist; noted primarily for Ohm's law of electric circuits; the unit of resistance, the ohm, named in his honour.

Joseph Von Fraunhofer (1787 to 1826)

German optician and physicist; studied the dark lines of the solar system; The Fraunhofer lines so named.

Michael Faraday (1791 to 1867)

English physicist and chemist; discovered electromagnetic induction and laws of electrolysis; the Faraday named in his honour.

Sadi Carnot (1796 to 1832)
Worked in Heat and Thermodynamics; Carnot engine.

Joseph Henry (1797 to 1879)

American physicist famous for work on electromagnetic induction; built first electromagnetic motor in 1829; the henry, unit of induction named after him.

Sir Charles Wheatstone (1802 to 1875)

English physicist; did many experiments on sound; shared first patent for electric telegraph; the wheatstone bridge is named after him.

Christian Johann Doppler (1803 to 1853)

Austrian physicist and mathematician; the Doppler effect in wave

Heinrich Friedrich Lenz (1804 to 1865)

German physicist; investigated electrical conductivity of materials; discovered law governing induced currents--lenz's law.

Charles Darwin (1809 to 1882)

Grandson of Dr. Erasmus Darwin.

Bunsen (1811 to 1899)

Laid the foundation for modern spectroscopy.

James Prescott Joule (1818 to 1889)

2 English physicist; studies in heat and electricity; Joule's law;
H = I²Rt; determined the mechanical equivalent of heat; the joule named after him.

<u>Sir George Stokes</u> (1819 to 1903)

British physicist and mathematician; investigations in X-rays and cathode rays; Stokes' law of a falling particle used in oil-drop experiment.

Herman-Ludwig Helmholtz (1821 to 1894)

German physiologist and physicist; theories on hearing and colourvision; studies in thermodynamics; invented resonators.

Clausius (1822 to 1888)
Worked in therodynamics.

Gustev Robert Kirchhoff (1824 to 1887)

German physicist; co-inventor of the spectroscope; studies in spectrum analysis; Kirchhoff's laws of electric circuits.

Lord William Thompson Kelvin (1824 to 1907)

Scottish mathematician and physicist; studies in heat and electricity; the Kelvin temperature scale.

Johann Balmer (1825 to 1898)

Swiss physicist; spectroscopy; the Balmer series.

James Clerk Maxwell (1831 to 1879)

Scottish natural philosopher; educated at Cambridge, later became professor of experimental physics there; noted for his publications on theory of heat and on electricity and magnetism.

<u>Dimitri Mendeleev</u> (1832 to 1907)

Russian chemist; many publications in various fields of chemistry; most of his work done in Russia; his proof of the periodic law in his most notable achievement.

Josef Stefan (1835 to 1893)

Austrian physicist; noted for the Stefan-Boltzmann law.

Johannes Van Der Waals (1837 to 1923)

Dutch physicist; investigations in thermodynamics and inter molecular attractions; Van der Waals' equation is a correction for Boyle's law for his pressures; Nobel prize for physics.

Gibbs (1839 to 1903)
Worked in chemical thermodynamics and statistical mechanics.

Edward William Morley (1838 to 1923)

American chemist; graduated from Williams College; remembered for his work on the Michelson-Morley experiment.

Wilhelm Konrad Roentgen (1845 to 1923)

German physicist; discovered and named X-rays; received the first Nobel prize in physics in 1901.

Thomas A. Edison (1847 to 1931)
American inventor; hundreds of inventions in electricity; the Edison effect.

Alvert Abraham Michelson (1852 to 1931)

American physicist; born in Prussia; noted for studies in light; perfected many optical instruments, such as interferometer; most important experiments were the measurement of the velocity of light, determination of the length of the standard meter, and the Michelson-Mørley experiment; received Novel prize in physics in 1907.

Hendrik Antoon Lorentz (1853 to 1928)

Dutch physicist; contributed to understanding of quantum theory; explained magnetic effect on spectrum lines; co-author of the Lorentz-Fitzgerald contraction theory that gave an explaination of the negative result in the Michelson-Morley experiment; received the Nobel prize in Physics in 1902.

George Francis Fitzgerald (1851 to 1901)

Irish physicist; offered the contraction theory as an explaination of the result of the Michelson-Morley experiment.

Sir J.J. Thomson (1856 to 1940)

British physicist; extensive study of electric conduction in gases; discovered the existence of isotopes; founder of modern atomic physics; awarded the Novel prize in physics in 1906; announced the discoverey of electron in 1897.

Heinrich Hertz (1857 to 1894)
Discovered photoelectric effect in 1887.

Karl Max Plank (1858 to 1947)

German physicist; proposed the quantum theory in 1900; Plank's constant h partly determines the value of a photon; Plank received the Nobel prize in Physics in 1918.

Pierre Curie (1859 to 1906)

French chemist and physicist; their most important investigations were in radioactivity; first to isolate radium; 1903 shared Nobel prize in physics with Henry A. Becquerel; the curie is named after them.

Friedrich Paschen (1865 to 1947)

German physicist; experimental spectroscopy; discovered Paschen infra-red series in hydrogen; co-discoverer of Paschen Back effect in magneto-optics; invented Paschen hollow cathode discharges.

Marie Curie (1867 to 1935)
Polish physical chemist; wife of Pierre Curie.

Robert Andrews Milikan (1868 to 1953)

American physicist; Professor of physics at California Institute of Technology; Nobel prize in physics in 1923; noted chiefly for his work in photoelectricity, and cosmic rays, and x-rays; best remembered for his determination of the value of e and Plank's constant.

C.T.R. Wilson (1869 to 1959)

Scottish physicist; studies in ionization; perfected the Wilson Cloud Champer; preceded Milikan in work on electronic charges; shared Nobel prize for physics in 1927 with A.H. Compton.

Ernest Lord Rutherford (1871 to 1937)

British physicist; discovered and named alpha, beta, and gamma rays; studied radioactive transformations; the scattering of alpha particles experiment set the stage for the nuclear atom; Rutherford first to produce artificial transmutation; Nobel prize in chemistry in 1908.

William David Coolidge (1873 to)
American physical chemist; invented the coolidge x-ray tube.

Theodore Lyman (1874 to 1954)

American physicist; studies in ultravoilet light; measurement of wavelengths with diffraction grating; the Lyman series.

Sir Owen Williams Richardson (1879 to 1959)

English physicist; noted mostly for his work on emission of electrons from hot bodies; developed the equation named after him; equation relates the emission current and the temperature of the emitting substance; received the Nobel prize in physics in 1928.

Albert Einstein (1879 to 1955)

Austrian-Swiss-American mathematical physicis; theory of relativity; the photoelectric effect; Nobel prize in physics in 1921.

Max Von Laue (1879 to 1960)

German physicist noted for his studies in x-rays; demonstrated interference phenomena produced by reflection of x-rays from a crystal grating; awarded the Nobel prize in physics in 1914.

Clinton Joseph Davisson (1881 to ----)

American physicist; industrial research at Bell Telephone Laboratories; investigations in electricity and radiation energy; shared Nobel prize in physics in 1927 with G.P. Thomson.

Hans Geiger (1882 to ----)
German physicist; studies in radioactivity; atomic theory; cosmic rays; the Geiger counter.

Niels Bohr (1885 to 1963)
Danish theoretical physicist; awarded Nobel prize for physics in 1922; the Bohr theory of the hydrogen atom.

Henry Gwyn Moseley (1887 to 1915)

English physicist; made discovery of relationship between frequency of x-rays and atomic number that places elements in proper order in periodic table; a casualty of World War I.

Erwin Schroedinger (1887 to 1961)

Austrian physicist; famous for his work on wave mechanics; Schroedinger's wave equation; in 1933, he shared the Nobel prize with Dirac.

Louis Victor DeBroglie (1892 to 1987)

French physicist; investigations in nuclear physics; awarded Nobel prize in physics in 1929; wave nature of the electron.

Arthur Holly Compton (1892 to 1962)

American physicist; x-rays and Compton effect; shared Nobel prize with C.T.R. Wilson in 1927.

<u>Lester Herman Germer</u> (1896 to ----)

American physicist; studies in thermionics, erosion of metals, electron diffraction.

Irene Joliot (1897 to ----)

Jean F. Joliot (1900 to ----)

Husband-wife; both French physicists and chemists; studies in radioactivity and nuclear physics; produced artificial radioactivity by bombarding boron with fast alpha particles; shared Nobel prize in chemistry in 1935.

Enrico Fermi (1901 to 1954)

Italian physicist; investigations in nuclear physics; first to use neutron to produce artificial transmutation; Nobel prize in physics in 1938.

Ernest Orlando Lawrence (1901 to 1958)

American physicist; builder of first cyclotron; investigations in nuclear physics; awarded the Nobel prize in physics in 1939.

Werner Karl Heisenberg (1901 to1976)

German physicist; famous for work on quantum theory and atomic structure; founding of quantum mechanics; evolved principle of indeterminancy; Nobel prize in physics in 1932.

Paul Adrien Dirac (1902 to 1984)

English physicist; predicted the existence of positron; nuclear physics and quantum mechanics; shared Nobel prize in 1933 with Erwin Schroedinger.

K.T. Bainbridge (1904 to ----) American physicist; studies in nuclear physics, photoelectric effect, mass spectrography. Carl D. Anderson (1905 to ---)

American physicist; research in gamma rays and cosmic rays; discovered positron in 1932; shared Nobel prize with Victor Hess in 1936.

Alfred O. Nier (1911 to ---)
American physicist; primary research deals with mass spectroscopy; aided in separating the isotopes of uranium.

Abdus Salam (1926 to ---)
Pakistani physicist; shared Nobel prize with Glashow and Weinberg in physics in 1979; contribution to the theory of the unified weak and electromagnetic interaction between elementary particles.

Nobel Prize Winners in Physics

1901 1902	Wilhelm Konrad Rontgen Hendrik Antoon Lorentz Pieter Zeeman	1845-1923 1853-1928 1865-1943	Discovery of X-rays. Influence of magnetism on the phenomena of atomic radiation.
1903	Henri Becquerel Pierre Curie Marie Curie	1852-1908 1850-1906 1867-1934	Discovery of natural radioactivity and of the radioactive elements radium and polonium.
1904 1905 1906	John W. Strutt(Rayleigh) Philipp Lenard Joseph John Thomson	1842-1919 1862-1947 1856-1940	Discovery of argon. Research in cathode rays. Conduction of electricity through gases.
1907	Albert A. Michelson	1852-1931	Invention of interferometer and spectroscopic and metrological investigations.
1908	Gabriel Lippmann	1845-1921	Photographic reproduction of colours.
1909	Guglielmo Marconi Karl Ferdinand Braun Johannes Diderik van der	1874 – 1937 1850 – 1918	Development of wireless teleg- raphy.
1910	Waals	1837-1923	Equations of state of gases and fluids.
1911 1912 1913	Wilhelm Wien Nils Gustaf Dalen Heike Kamerlingh Onnes	1864-1928 1869-1937 1853-1926	Laws of heat radiation. Automatic coastal lighting. Properties of matter at low temperatures: production of liquid helium.
1914 1915	Max von Laue Wilham Henry Bragg William Lawrence Bragg	1879-1960 1862-1942 1890-1971	Diffraction of X-rays in crystals. Study of crystal structure by means of X-rays.
1917	Charles Glover Barkla	1877-1944	Discovery of the characteristic X-rays of elements.
1918	Max Planck	1858-1947	Discovery of the elemental
1919	Johannes Stark	1874-1957	Discovery of the Doppler effect in canal rays and the splitting of spectral lines in the electric field.
1920	Charles Edouard Guillaume	1861-1938	Discovery of the anomalies of nickel-steel alloys.
1921	Albert Einstein	1879-1955	Discovery of the law of the photoelectric effect.
1922	Niels Bohr	1885-1963	Study of structure and radiations of atoms.
1923	Robert Andrews Millikan	1868-1953	Work on elementary electric charge and the photoelectric effect.
1924	Karl Manne Siegbahn	1886_1978	Discoveries in the area of X-ray spectra.
1925	James Franck Gustav Hertz	1882-1964 1887-1975	Laws governing collision between electron and atom.
1926	Jean Perrin	1870-1942	Discovery of the equilibrium of sedimentation.
1927	Arthur H. Compton	1892-1962	Discovery of the scattering of X-rays by charged particles
	Charles T.R. Wilson	1869-1959	Invention of the cloud chamber, a device to make visible the paths of charged particles.

1928	Owen Willans Richardson	1879-1959	Discovery of the law known by his name(the dependency of the emission of electrons on
1929 1930	Louis Victor de Broglie Chandrasekhara Raman	1892 -1987 1888 - 1970	temperature). Wave nature of electrons. Work on the scattering of light and discovery of the effect known by his name.
1932 1933	Wermer Heisenberg Paul Adrien Maurice Dirac Erwin Schrodinger	1901 –1976 1902 –198 4 1887 – 1961	Creation of quantum mechanics. Discovery of new fertile forms of the atomic theory.
1935 1936	James Chadwick Victor Hess	1891 -197 4 1883 - 1964	Discovery of the neutron. Discovery of cosmic radiation. Discovery of the positron.
1937	Carl David Anderson Clinton Joseph Davisson	1905 - 1881 - 1958	Discovery of diffraction of
1938	George P. Thomson Enrico Fermi	1892 -1975 1901 - 1954	electrons by crystals. Artificial radioactive elements from neutron irradiation.
1939	E.O. Lawrence	1901-1958	Invention of the cyclotron.
1943	Otto Stern	1888-1969	Work with molecular beams and magnetic moment of proton.
1944 1945	Isidor Isaac Rabi Wolfgang Pauli	1898 -1988 1900 - 1958	Nuclear magnetic resonance. Discovery of quantum exclusion principle.
1946 1947	Percy Williams Bridgman Edward Appleton	1882-1961 1892 - 1965	High-pressure physics. Upper atmosphere physics and discovery of Appleton layer.
1948	Fatrick Maynard Stuart- Blackett	1897-1974	Discoveries in cosmic radiation and nuclear physics.
1949 1950	Hideki Yukawa Cecil Frank Powell	1907 -1 981 1903 - 1969	Prediction of existence of meson. Photographic method of studying nuclear processes; discoveries about mesons.
1951	John Douglas Cockcroft Ernest Thomas Sinton-	1897-1967	Transmutation of atomic nuclei by artificially accelerated
1952	Walton Felix Bloch	1903 - 1905 -	atomic particles. Measure of magnetic fields in
1953	Edward Mills Purcell Frits Zernike	1912 - 1888 - 1966	atomic nuclei. Invention of phase contrast
1954	Max Born Walther Bothe	1882 - 1970 1891 - 1957	microscopy. Work in quantum mechanics and Analysis of cosmic radiation
1955	Wills E. Lamb Jr.	1913-	using the coincidence method. Fine structure of hydrogen.
1956	Polykarp Kusch John Bardeen	1911- 1908 - 1987	Magnetic moment of electron. Invention and development of
	Walter H. Brattain William B. Shockley	1902 - 1910 -	transistor.
1957	Chen Ning Yang Tsung Dao Lee	1922 - 1926 -	Non-conservation of parity and work in elementary particle theory.
1958	Pavel A. Cerenkov Ilya M. Frank Igor Y. Tamm	1904- 1908- 1895 -1971	Discovery and interpretation of Cerenkov effect of radiation by fast charged particles in matter.

1959	Owen Chamberlain	1920 1905-	Discovery of the antiproton.
1960	Emilio Gino Segre Donald A. Glaser	1926-	Invention of the bubble chamber.
1961	Robert L. Hofstadter	1915-	Electromagnetic structure of
1901	Moder of 20 mars		nucleons from high energy electron
			scattering.
	Rudolf L. Mossbauer	1929-	Recoilless resonance absorption of
2.4			gamma rays in nuclei; Mossbauer effect
1962	Lev D. Landau	1908-1968	Theory of condensed matter; phenomena of superfluidity and
			superconductivity.
		4000	Theory of the atomic nucleus and
1963	Eugene P. Wigner	1902-	elementary particles through
			discovery and application of
			symmetry principles.
	Marie Company Morror	1906-1972	Shell model theory and magic numb-
	Maria Goeppert-Mayer	1907-1973	ers for the atomic nucleus.
1964	J. Hans D. Jensen Charles H. Townes	1915-	Invention of the maser and theory
1904	Nikolai G. Basov	1922-	of coherent atomic radiation.
	Alexander Prokhorov	1916-	
1965	Richard P. Feynman	1918-1988	Development of quantum electro-
1303	Julian S. Schwinger	1918-	dynamics.
	Shin-Itiro Tomanaga	1906-1979	a
1966	Alfred Kastler	1902-1984	Optical methods for studying Hert- zian resonances in atoms.
			Theory of nuclear reactions, energy
1967	Hans A. Bethe	1906-	production in stars.
		1911-	Development of the hydrogen bubble
1968	Luis W. Alvarez	1511-	chamber and methods of data
			analysis.
1969	Murray Gell-Mann	1929-	Classifications of elementary
1909	Muliay Gell-India		particles and their ineractions.
1970	Hannes O.G. Alfven	1908-	Research in magnetohydrodynamics
1510	1100000		and plasma physics. Discoveries in antiferromagnetism
	Louis E. F. Neel	190 4-	and ferrimagnetism important in
			solid state physics.
	and a sameway	1000 1070	Invention of holography.
1971	Dennis Gabor	1900 – 1979 1930 –	Theory of superconductivity.
1972	Leon N. Cooper	1931-	2
	John R. Schrieffer	1908-1987	
1073	John Bardeen Leo Esaki	1925-	Discovery of tunnelling in
1973	Leo Esaki		semiconductors.
	Ivar Giaever	1929-	Discovery of tunnelling in
	Ival older-	400	superconductors. Theoretical prediction of a super-
	Brian D. Josephson	1940-	current through a tunnel barrier,
			the Josephson effect.
			Research in radio astrophysics;
1974	Antony Hewish	1924-	discovery of Dulsars.
		1918-1984	DI compat of radio Telescopes
	Martin Ryle	1910=190+	technique of aperture synthesis.
	A Niola Dohn	1922-	technique of aperture synthesis. Theory of the atomic nucleus based on the connection between coll-
1975	Aage Niels Bohr Ben R. Mottelson	1926-	on the connection between coll
	Leo J. Rainwater	1917-	ective motion and particle
	Dec 00 reasons		Independent discoveries of the psi
1976	Burton Richter	1931-	am I norticle Delleved to be
1910	Samuel C.C. Ting	1936-	the smallest building block of
	:		matter.
			me 4 - 2 m 4

1977	John H. v. Vleck	1899-1980	Electronic structure of magnetic and disordered systems.
	Nevill F. Mott Philip W. Anderson	1905- 1923-	Discoveries in solid state physics, use of amorphous material, in electronic switching and memory devices.
1978	Peter L. Kapitza	1894-1984	Inventions and discoveries in low- temperature physics.
	Arno A. Penzias Robert W. Wilson	1933 - 1936 -	Discovery of cosmic microwave rad- lation; remnant of a primordial fireball.
1979	Steven Weinberg Abdus Salam Sheldon L. Glashow James W. Cronin Val L. Fitch	1933- 1926- 1932- 1931- 1923-	Independent development of a theory that unifies electromagnetism and the weak nuclear force. Discovery of violations of fundamental symmetry.
1981	Kai M.B. Siegbahn	1918-	Development of electron spectro- scopy.
1982	Nicolaas Bloembergen Arthur L. Schawlow Kenneth G. Wilson	1920- 1921- 1936-	Development of laser spectroscopy. Theory for critical phenomina in phase transitions.
1983	William A. Fowler S. Chandrasekhar	1911- 1910-	Studies of physical processes in the structure and evolution of stars.
1984	Carlo Rubbia Simon v.d. Meer	193¼~ 1985~	Discovery of the subatomic field particles W ⁺ , W ⁻ and Z.
1985	Klaus v. Klitzing	1943-	Discovery of the quantised Hall effect.
1986	Ernst Ruska	1906-	Design of the first electron microscope.
	Heinrich Rohrer Gerd Binning	1933~ 1947~	Development of the scanning tunn- elling microscope.
1987	Karl A. Muller J. G. Bednorz	1927 - 1950-	Discovery of high-temperature superconductivity in copper oxide ceramic materials.
1988	Leon M. Lederman Melvin Schwartz Jack Steinberger		Established the existence of a second kind of neutrino, and employed the first beam of neutrinos.

The Great Philosophers

Name	Dates	Nationality	Representative Work
Heraclitus	c.544-483BC	Greek	On Nature
Parmenides	c.510-c.450BC	Greek	fragments
Socrates	469-399BC	Greek	Manual Transfer of the Control of th
Plato	428-347BC	Greek	Republic; Phaedo
Aristotle	384-322BC	Greek	Nichomachaen Ethics; Metaphysics
Epicurus	341-270BC	Greek	fragments
Lucretius	c.99-55BC	Roman	On the Nature of Things
Plotinus	AD205-270	Greek	Enneads
Augustine	354-430	N African	Confessions; City of God
Aquinas	c.1225-1274	Italian	Summa Theologica
Duns Scotus	c.1266-1308	Scottish	Opus Oxoniense
William of Occam	c.1285-1349	English	Commentary of the Sentences
Nicholas of Cusa	1401-1464	German	De Docta Ignorantia
Giordano Bruno	1548-1600	Italian	De la Causa, Principio e Uno
Bacon	1561-1626	English	Novum Organum, The Advancement of Learning
Hobbes	1588-1679	English	Leviathan
Descartes	1596-1650	French	Discourse on Method; Meditations on Philosophy
Pascal	1623-1662	French	Pensees
Spinoza	1632-1677	Dutch	Ethics
Locke	1632-1704	English	Essay Concerning Human Understanding
Leibniz	1646-1716	German	The Monadology
Vico	1668-1744	Italian	The New Science
Berkeley	1685-1753	Irish	A Treatise on Principles of Human Knowledge
Hume	1711-1776	Scottish	A treatise of Human Nature
Rousseau	1712-1778	French	The Social Contract
Diderot	1713-1784	French	D'Alembert's Dream
Kant	1724-1804	German	The Critique of Pure Reason
Fichte	1762-1814	German	The Science of Knowledge
Hegel	1770-1831	German	The Phenomenology of Spirit
Schelling	1775-1854	German	System of Transcendental Idealism
Schopenhauer	1788-1860	German	The World as Will and Idea
Comte	1798-1857	French	Cours de philosophie positive
Mill	1806-1873	English	Utilitarianism
Kierkegaard	1813-1855	Danish	Concept of Dread
Marx	1818-1883	German	Economics and Philosophical Manuscripts
Dilthey	1833-1911	German	The Rise of Hemeneutics
Pierce	1839-1914	US	How to Make our Ideas Clear
Nietzsche	1844-1900	German	Thus Spake Zarathustra
Bergson	1859-1941	French	Creative Evolution
Husserl	1859-1936	German	Logical Investigations
Russell	1872-1970	English	Principia Mathematica
Lukacs	1885-1971	Hungarian	History and Class Consciousness
Wittgenstein	1889-1951	Austrian	Tractatus Logico-Philosophical Investigations
Heidegger	1889-1976	German	Being and Time
Gadamer	1900-	German	Truth and Method
Sartre	1905-1980	French	Being and Nothingness
Merleau Ponty	1908-1961	French	The Phenomenology of Perception
Ouine	1908-1901	US	Word and Object
Foucault	1926-1984	French	The Order of Things

Origin of few Physics words

Word	from	meaning
atom	atomos (Greek)	uncuttable
ammeter	ampere-meter	
astatine		unstable
cosmic rays	cosmos (Greek)	whole universe
c	celeritas (Latin)	velocity
electricity	electrics (Greek)	amber
ferromagnetic	ferrum (Latin)	iron
formaline	formaldehyde	
Francium	the native land of French	
	Chemist, Mlle. M. Perey	
fusion	synonymous with melting	3
k	konstant- German spellin	g
light beam	Baum- German word for	tree
Leyden jar	University of Leyden, Ne	etherlands
Magnet	magnetism- a town in Tu	rkey- Magnesia
Physics	physiko (Greek) natural	
	brief form of physical pl	hilosophy
pneumatics	mechanics of gases (Gree	
polonium	Madame Curie's native la	
radiation	ray Latin word 'radius'	
radium	intense radio-activity	
radio wave	wave that radiate	
transformer	that transforms volt-ampe	re relationship
technetium	artificial- first discovery f	rom man-made
virtual		as if

Foreign words used in Science

Word	Language	Meaning
Acceleration	Latin	to add speed
Ad-hesion	Latin	to stick to
Acoustics	Greek	to hear
Astigmatism	//	no point
Anode	//	upper root
Argon	//	inactive
Alkali	Arabic	ash
Bar	Greek	heavy
Cohesion	Latin	to stick to
Centripetal	//	move toward the centre
Centrifugal	//	flee from the centre
Caplillary tubes	//	hair-like
Cathode	Greek	lower root
Centigrade scale	Latin	hundred degrees
Cesium	Greek	sky blue
Convection	Latin	to carry together
Conduction	//	to lead together
Calorie	. //	heat
Camera obscure	//	dark room
Chromatic	Greek	colour
Crystal	//	ice
Crystalline	//	transparent
Converge	Latin	to lean together
Convex surface	. //	drawn together
Concave surface	//	with a hollow
soci or rates		
Diopters	Greek	to see through
Dielectrics	//	through
Diverge	Latin	to lean apart
Deuterium	Greek	second
Dyne	//	force
		185-250324
Equilibrium	Latin	equal weights
Erg	Greek	work
Energy	//	work within
Electrostatics	Latin	to be stationary
Electrode	Greek	route of the electricity
Electrolysis	//	loosening by electricity
Electro dynamics	//	electricity in motion
Ether	//	blazing
Electrics	//	amber

17-1-41	Latin	rub
Friction	Latin //	strength
Force	//	to flow
Fluids		
Focus	//	hearth
Gravity	Latin	weighty
Gas	Greek	chaos
Galvanometer	//	to measure galvanic electricity
Hydrodynamics	//	the motions of water
Hyperopia	//	vision beyond
Helium	//	Sun
Halogens	//	salt formers
Inertia	Latin	idleness or laziness
Infrasonic waves	//	below sound
Insulator	//	island
Infrared	- //	below the red
lons	Greek	wanderer, goers, or travellers
Isotope	//	same place
isotope	***	same piace
Kinetic	. //	to move or motion
Lever	Latin	to lift
Lumen	//	light
L.ens	//	lentil seed
Liquids	//	to flow
TO VICE IN		
Momentum	//	motion
Machine	//	invention or device
Meniscus	Greek	little moon
Mirror	Latin	to look at with astonishment
Myopia	Greek	shut vision
Microscope	//	to see the small
Monochromatic	//	one colour
Molecule	Latin	a small mass
Molecule	1 200200000	
Normal	//	carpenter's square used to
TVOITURE		draw perpendiculars
Octave	//	eighth
	Greek	sight
Optics	Latin	dark
Opaque	Lattii	udik
Philosophers	Greek	lovers of wisdom
Period	//	round path or circle
Pendulum	Latin	hanging or swinging

Presbyopia	Greek	old man's vision
Photography	Latin	writing by light
Photons	Greek	light
Piezoelectricity	//	electricity through pressure
Proton	//	first
Quantum	Latin	how much?
Rotational motion	//	wheel
Resonance	//	to sound again
Reflection	//	to bend back
Radius	//	spoke of a wheel
Refraction	//	to break back
Rubidium	//	dark red
Science	Latin	to know
Statics	Greek	to cause to stand
Spherical aberration	Latin	to wander away
Spectrum	//	image
Solenoid	Greek	pipe-shaped
Translational motion	Latin	to carry across
Torque	//	to twist
Trigonometry	Greek	the measurement of triangles
Transverse	Latin	lying across
Thermometer	Greek	heat measure
Thermodynamics	Latin	motion of heat
Transparent	//	to be seen across
Telescope	Greek	to see the distant
Telegraph	//	writing at a distance
Telephone	//	to speak at distance
Tritium	//	third
Ultrasonic waves	Latin	beyond sound
Umbra	//	shadow
Vacuum	//	empty
Vis viva	//	living force
Vibration	//	to shake
or Vibratory motion	//	to shake
Vitreous	//	glass
110000		

The Elements

All forms of matter---solids, liquids and gases---are made up of just over 100 basic elements; to date, 107 have been discovered.

The elements known to date

The table below lists all 107 known elements in alphabetical order. For clarity, they have been grouped into metals, non-metals and the noble gases. The dash means that the information is not known, or it too remote. Almost all information preceding the Christian era is unknown. The dashes will also be found for two elements discovered in 1974 and 1977. This is because neither their names nor their atomic weights have yet been determined.

By looking at the dates of discovery it can be seen that most elements---in fact, more than half of them---were identified during the second half of the eighteenth century and during the nineteenth century. Only ten were known two thousand years ago and only three were discovered in the next 1700 years.

Name METALS	Symbol	Atomic No.	Atomic weight	Date of discovery	Discoverer
Actinium Aluminium Americium	Ac Al Am	89 13 95	227 26.98 243	1899 1825 19 ^{կ-կ}	Debierne-Giesel Oersted Seaborg and collaborators
Antimony Barium Berkelium Berkelium Beryllium Bismuth Cadmium Caesium Californium Cerium Chromium Cobalt Copper Curium Dysprosium Einsteinium Erbium Erbium Fermium Fermium Gadolinium Gallium Germanium Gold Hafnium Hahnium Holmium Indium Iridium Iron Kurchatovium Lawrencium Lawrencium Lead	Sbakeeidseccoumysrumrdseufeuswine CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	51674384550885477966983077432925776447382	121.75 137.3 ⁴ 2 ⁴ 7 9.012 208.98 112.40 132.90 40.08 251 140.12 51.99 58.93 63.5 ⁴ 247 167.26 151.96 257 157.25 69.72 72.596 178.49 260 164.93 11 ⁴ .82 192.8 ⁴ 260 138.91 257.19	1808 1950 1828 1817 1860 1808 1950 1803 1797 1735 1944 1886 1952 1843 1896 1953 1939 1880 1875 1886 1970 1879 1863 1970 1879 1863 1970 1879 1863 1967 1839	Davy Seaborg and coll. Wohler Stromeyer Bunsen-Kirchhoff Davy Seaborg and coll. Klaproth Vauquelin Brandt Seaborg and coll. De Boisbaudran Ghiorso and coll. Mosander Demarcay University of Cal. Perey Marignac De Boisbaudran Winkler Coster-Hevesy Ghiorso and coll. Cleve Reiche-Richter Tennant Flerov and coll. Mosander Ghiorso and coll.
Lithium	Li	3	6.94	1817	Arfvedson

			25		
Nome	Cirmbol.	Atomic No.	Atomic	Date of	Diagoronan
Name	Symbol	Atomic No.	weight	discovery	Discoverer
Lutetium Magnesium Manganese Mendelevium Mercury Molybdenum Neodymium Neptunium Nickel Niobium Nobelium Osmium Palladium Platinum Platinum Plutonium Potassium Promethium Promethium Promethium Radium Rhenium Radium Ruthenium Scandium Scandium Scandium Strontium Tantalum Technetium Terbium Thallium Thorium Thulium Tin Titanium Tungsten Uranium Vanadium Ytterbium Yttrium Zinc Zirconium Unnilbexium Unnilbexium Unnilbexium	Lu Mand Musiko setu o Permaa ehbum c garacbi Thmoni Wuyy Zornhsuns	71 251 80 928 10746 81 99 10746 81 99 107 406 107	174.97 24.31 54.93 256 200.59 95.94 144.24 237 58.71 92.90 255.2 106.4 195.0 2190.2 140.90 147.2 231 236.2 102.947 101.07 154.97 101.07 154.97 101.07 154.97 101.07 154.97 101.07 154.97 101.07 107.98 107.98 107.98 107.98 107.98 108.99 108.99 109.99	1907 1808 1774 1955	Urbain-Welsbach Davy Scheele-Gahn Ghiorso and coll. Hjelm Welsbach McMillan-Abelson Cronstedt Hatchett Ghiorso and coll. Tennant Wollaston de Ulloa Seaborg and coll. Curie Davy Welsbach Coryell and coll. Hahn-Meitner Curie Noddack-Tacke Wollaston Bunsen-Kirchhoff Claus De Boisbaudran Nilson Davy Cruikshank Ekeberg Perrier-Segre Mosander Crooks Berzelius Cleve Gregor D'Elhuyar Klaproth Sefstrom Marignac Gadolin Paracelsus Klaproth Ghiorso and coll. Flerov and coll.
NON-METALS Arsenic Astatine Boron Bromide Carbon Chlorine Fluorine Hydrogen Lodine	As At B Br C C1 F H	33 85 5 35 6 17 9 1	74.21 210 10.811 79.90 12.011 35.453 18.99 1.007 126.90	1200 1940 1808 1826 	Albertus Magnus Corson and coll. Gay-Lussac Balard Scheele Moissan Cavendish Courtois

Name	Symbol	Atomic No	Atomic weight	<u>Date of</u> discovery	Disc	overor
Nitrogen Oxygen Phosphoru Selenium Silicon Sulphur Tellurium	Se Si S	7 8 15 34 14 16 52	14.00 15.999 30.97 78.96 28.08 23.062 127.60	1772 1774 1668 1817 1823 	Pri Bra Ber	zelius zelius
NOBLE GAS	ES					
Argon Helium Krypton Neon Radon Xenon	Ar He Kr Ne Rn Xe	18 2 36 10 86 54	39.94 4.002 83.80 20.18 222 131.30	1894 1895 1898 1898 1900 1898	Ram	ve-Ramsay say say-Travers n

Some characteristcis of common glasses

Glass	Approximate Composition	Annealing temperature/°C
Soda(S _K)	Sodium calcium silicate	515
Lead(Lgy)	Lead silicate	435
Pyrex	Sodium aluminium silicate	530-600
Silica	Silica	
GEC B37	Silica, boron, sodium	560
Monax	Silica(small amounts of sodium potassium,zinc and aluminium	560

PERIODIC	TABLE

Filled Shells	_																	>
	H Hydrogen 1 0079	=	Č	S. Carrier and C. Car	1	кеу		Aronne Number	5 -				Ξ	2	>	17	NII/	He Helium 4.00260
	Li 3 -:	Be Beryllum 9.01218	Atomi	Atomic Weight —		Au Gold — 196.9665		nicol nc				L. Company	3 5 E Boron 10.81	Carbon 12:011	1-1 1-2 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3	8 O Daygen 5.9994	F Fuorine 18:99840	Ne Neon 20:179
	2:1		Electr	Electron Configuration - 152-19-1	ration -	-27-10-1	7					L.	3 13 ===	14 = 3	15 15	16 =1	17 0	18
	Z eZ	a Mg										Marine W	A	Si			CI	Ar
		Magnesium 24.305					Transition Elements	Elements					26.98154	28.086	30.97376	32.06	35.453	39.948
	2.8-1 2.8	2-8-2	3 211	-2 22 1-	-126 2	-1 74 -	25 +3	-3 26 +3	2 27 +2	780	1 29 2	30 +3	-3 31	31 11 32 11	33 +4	34	35 0	3
	2	27 6	Sc	127	Ti 1	V	. Wn	Fe	00	Z	Cu	Zn	Ga	Ge	As	ശ	Br	X
			Scandium	Titanium			Manganese 54 9380	1ron 55.847	Coball 58.9332	Nickel 58.70	Copper 63.546	Zine 65.38	Gaillium 69.72	Germanium 72.59	Arsenic 74.9216	Selenium 78.96	Bromine 79.904	83.80
	29.03%	, K. R. J	2.6.8.	-8-10-2		-8-13-1	00	-8-14-2	-8-15-2	-8-16-2	-8-14-2 -8-15-2 -8-16-2 -8-18-1 -8-18-2	-8-18-2	-8-18-3	-8-18-3 -8-18-4	-8-18-5	-8-18-6	ob	-8-18-8
7-1	2-1 37	38 +3	.1 39 +4	+4 40 123		41 -6 42 74		-3 44	3 45 1	- 46 -	-1 47	-2 48	+3 49	12 50	43 +3 44 +3 45 12 46 +1 47 -2 48 +3 49 12 50 13 51 14	22	53	
	Rb	Sr	>	Zr	QZ.	Mo	Tc Tc	Ru	Rh	Pd	Ag	PO	In	Sn	Sp	Te	- 1	Xe
			Ythrium 88,9059		Niobium 92.9064	Motybdenum Technetium 95.94 (97)	Technetium (97)		Rhodium 102.9055	Palladium 106.4	Silver 107.868	Cadmium 112.40	I 14.82	118.69	Amtimony 121.75	127.60	126.9045	131.30
		-		-18-10-2	-18-13-1	-18-13-1	-18-13-2		-18-16-1	-18-18-0	-18-18-1	-18-18-2	-18-18-3	-18-18-4	-18-15-1 -18-16-1 -18-18-0 -18-18-1 -18-18-2 -18-18-3 -18-18-4 -18-18-5 -18-18-6			-10-10-10
0-1	1:-	2 56	57-71	-4 72 -5 73 -6	-5 73	+6 74	75 15	+3 76 +3		100	77 1-2 78 1-3 79 1-2 80 1-3 81 1-2	-1 80	+1 81	*** 82	82 +3 83 +2	24	000	
	S	Ba		H	Ta	M	W Re	os	1	F	Au	Hg	E	Pb	Bi	Po	At	Ru
	Cesium	Barium 137 1.1	See	Hafnium 178 49	Tantalum 180 9479	Wolfram 183.85	Rhenium 186.207		Indium 192,22	195.09	196.9665	200.59	204.37	207.2	208.9804	(506)	(210)	(222)
8 8 8	18-8-1	18-8-2	nides	-32-10-2	-32-11-2	-32-12-2	-32-13-2		-32-15-2	.32-17-1	.32-48-1	-32-18-2	-32-18-3	-32-18-4	-32-18-5	-32-18-6	-32-18-7	-32-18-8
	- 1 87	-: 88	89-102	104	105	106	107											Noble
	F	Ra		Rutherfordium;		2	Uns											Gases
	Francium	Radium 7.6.0754	See	(261)	(262)	(263)	ישרבופנף-											
0.00	18.8	.18.X.7	nides	.32-10-2	-32-11-2	-32-12-2	(404)											

PERIODIC TABLE OF THE ELEMENTS

	-3 57	58	58 -3 59 -3		60 +3 61	61 173 62 173	+2 63 -3		7	65 +3	99		67 -3 68	69 -: 89	69 113 70	70 +3 71
	- C	ڻ	Pr	Ž	Pm	Sm	-	PS	Tp		Dv	Ho	Er	Tm	Y.P	Lu
1 anthanides	I ampanim	Cerum	Pracendymium	Nendymium		Samarium					prosium	Holmium	Erbium	Thulium	Ytterbium	Lutetiu
Pallulania	138 9055	140.12	140.9077	144.24		150.4					2.50	164.9304	167.26	168.9342	173.04	174.9
		.19-0.7	-21-8-2		-23-8-2	-24-8-2	-25-8-2	-25-9-2	-529-	9.2	2-8-3	.29-8-2	-30-8-2	-31-8-2	-32-8-2	.32-9.
	-3 89	06	16		3 92 2 3 93 3 94 2 95 3 96 3 97 3 98 3 98 3 90 3 100 3 101 3 102 3 103	113 94	6 11	5 .3	€ :3 9	97 +3	- 86	·3 99	-3 100	13 101	1.3 102	-3
	Ac	T	Pa ÷ C	D	dN 9+	+5 Pu	±6 Am	Cm	B	_	CC	Es	Fm	Md	. S	Ļ
Actinides	Artinium	Thorner	Protectinism	Uranim	Mentinium	Plutonium	Americian	m Curium	Berke	lium Call	tominm !	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrenc
	(277)	232.0381	231.0359	238.029	237.0482	(244)	(243)	(247)	(24	7	1182	(2,54)	(257)	(258)	(255)	1260
	18.6.2	-18-10-2	20.9-2	.21-9-2	.22-9-2	.24-8-2	-25-8-	2 -25-9-2	1 -27-		8-8-2	29.8-2	-30-8-2	-31-8-2	-32-8-2	-32-9

Note:
Atomic weights are those of the most commonly available long-lived isotopes on the 1973 IUPAC Atomic Weights of the Elements. A value given in parentheses denotes the mass number of the longest-lived isotope. Adapted from Merck Index: An Encyclopedia of Chemicals and Drugs. Merck and Co., Inc., 9th ed.: 1976.

Basic dimensions	and	units	in	the	SI	(International)	System
------------------	-----	-------	----	-----	----	-----------------	--------

Bas.	rc drumensr	ons and	thites in the bi (international) bystem
Dimension	Unit	Unit symbol	Definition and Standard
length	metre	m	The length of the standard metre rod kept at Sevres, in France. It is defined as 1,650,763.73 times the wavelength of the red-orange light emitted by a krypton lamp. It is approximately one forty-millionth part of the equator.
mass	kilogram	kg	The mass of the standard kilogram in platinum and iridium kept at Sevres. It is approximately equal to that of a litre of pure water. The redefining of this dimensional standard in terms of a number of carbon atoms is being considered.
time	second	s	The duration of 9,192,631,770 vibrations of the radiation produced by the caesium atom. It corresponds to 1/86,400 of the mean solar day.
electric current	ampere	A	The amount of current which, when flowing through two parallel, rectilinear conductors one metre in length and one metre apart, will produce a force equal to two ten-millionths of a newton (a unit of force). An ampere is roughly equivalent to the flow of 6 million million million electrons per second.
temperatur	e kelvin	К	The kelvin is equal to the degree celsius or centigrade. It is defined as 1/273.16 of the thermodynamic temperature of the triple point (freezing point) of water. This point is 273.16 K and absolute zero is 0 K.
luminous intensity		cd	One sixtieth of the light emitted in a perpendicular direction by a square centimetre of a black body (an ideal luminous source) at the temperature of melting platinum.
amount of substance	mole	mol	The amount of substance which contains as many elementary units (atoms or molecules) as there are atoms in twelve grams of the isotope carbon-12 (approximately 6x10 ²³).
	APPENDIX 3.		Additional units Quantity Unit Symbol

Quantity	Unit	Sy	mbol
Additional units			-
Angle	radian		rad
Solid angle	radian		rad
Other named units			
Frequency	Hertz	Hz	I/s
Force	Newton	N	kg m/s
Energy	Joule	J	Nm
Pressure	Pascal	Pa	N/m ²
Power	Watt	W	J/s
Electric charge	Coulomb	C	As
Potential	Volt	V	J/C
Resistance	Ohm	Ω	V/A
Conductance	Siemens	S	A/V
Capacitance	Farad	F	C/V
Magnetic flux	Weber	Wb	V s
Inductance	Henry	H	Wb/A
Magnetic induction	Tesla	T	Wb/m ²
Light flux	Lumen	Lm	Cd rad

3. Tables of weights and measures

(For comprehensive list see Encyclopaedia Britannica)

UNITS OF CAPACITY

In the UK the commercial units of capacity both for fluids and dry substances are the gallon and units derived from it. In the US the gallon and derived units are legal measures only for fluids; for dry substances, the units are the bushel and units derived from it.

UK (liquids and solids)

```
60 minims
                = 1 fluid drachm
8 fluid drachms = 1 fluid ounce
5 fluid ounces = 1 gill
4 gills
               = 1 pint
2 pints
               = 1 quart
4 quarts
               = 1 gallon
2 gallons
               =1 peck
4 pecks
                = 1 bushel
3 bushels
               = 1 sack
8 bushels
                = 1 quarter
12 sacks
               = 1 chaldron
               = 1.20094 US gallon = 277.42 in<sup>3</sup>
1 UK gallon
1 UK minim
               =0.960754 US minim
```

US (liquid)

```
60 minims = 1 fluid dram
8 fluid drams = 1 fluid ounce
4 fluid ounces = 1 gill
```

Tables of weights and measures

```
4 gills = 1 liquid pint
2 liquid pints = 1 liquid quart
4 liquid quarts = 1 gallon
42 gallons = 1 barrel
1 US gallon = 231 in<sup>3</sup>
```

US (dry measure)

```
2 dry pints = 1 dry quart

8 dry quarts = 1 peck

4 pecks = 1 bushel

1 bushel (US) = 0.968 939 bushel (UK)

= 2150·42 in<sup>3</sup> = 35·239 071 669 dm<sup>3</sup>
```

The bushel is sometimes called the stricken or struck bushel.

UNITS OF AREA

```
144 square inches = 1 square foot
9 square feet = 1 square yard
30\(^4\) square yards = 1 square rod, pole or perch
40 square rods = 1 rood
4 roods = 1 acre
640 acres = 1 square mile
4840 square yards = 1 acre
1 square yard = 0.836127 square metre
1 acre = 2.25 ver, ees (Jersey)
= 2.625 ver gees (Guernsey)
```

UNITS OF LENGTH

```
12 lines = 1 inch (in)
12 inches = 1 foot (ft)
3 feet = 1 yard (yd)
5½ yards = 1 rod, pole or perch
40 rods = 1 furlong
8 furlongs = 1 mile
```

The English mile is 1760 yards whereas the Irish mile (obsolete) is 2240 yards. A Gunter's chain consists of a hundred links and is 22 yards long. In the USA an Engineer's chain of 100 feet is also used.

```
1 yard = 0.9144 metre
5 miles ≈ 8 kilometres
```

5. Conversion factors for SI and CGS units

¥	M	easured in		
Quantity	CGS	SI	A	В
Mass	gram (g)	kilogram (kg)	103	
Length	cm	metre (m)	102	
Time	second (s)	second (s)	1	
Volume	cm ³	metre ³	10)6	
Area	cm ²	metre ²	104	
Density*	g cm -3	kg m ⁻³	103	
Velocity	cm s 1	m s - 1	102	
Moment of		200.00	2.350	
Inertia	g cm²	kg m ²	107	
Force	dyne	newton (N)	105	
Work	erg	joule (J)	107	
Power	erg s ⁻¹	watt (W)	107	
Capacitance	1 3 6 5	farad (F)	10 - 9	8.988×10^{20}
Charge		coulomb (C)	10 1	2.998×10^{10}
Current	biot	ampere (A)	10-1	2.998 × 10 ¹⁰
Electric field			1.5.20	2 2 2 0 × 10
strength		V m ⁻¹ or		
Charles & Section		NC I	106	3.335×10^{-11}
Electric flux		coulomb (C)	1-257	2.998×10^{10}
nductance	cm	henry (H)	109	1.113×10^{-21}
ntensity of mag-		,		1113 × 10
netization		Wb m ⁻²	7.958×10^{2}	3.335×10^{-11}
Magnetic field				5 555 A 10
strength	oersted	A m - 1	1.257×10^{-2}	2.998×10^{10}
Magnetic flux	maxwell	weber (Wb)	108	3.335×10^{-11}
Magnetic flux				
density	gauss	tesla	104	3.335×10^{-11}
Magnetic pole				5 5 5 5 A 10
strength		weber (Wb)	7.958×10^{6}	3.335×10^{-11}
Aagnetomotive				2232 × 10
force	gilbert	ampere turn (A)	1.257	2.988 × 1010
	6	ampere turn (/t)		2 700 ~ 10

	Med	isured in		
Quantity	CGS	S7		В
Permeability		H m ⁻¹ or Wb A ⁻¹ m ⁻¹	7.058 > 105	1:113 × 10 -21
Permittivity		C m 1 V 1	8 854 × 10 12	8.988×10^{20}
Potential differ- ence		volt (V)	10 ⁸	3:335 × 10 ⁻¹³
Reluctance		A Wb 1	1 257 × 10 B	8 988 × 1020
Resistance		ohm (Ω)	104	1.113×10^{-2} 1.113×10^{-2}
Resistivity	en e	ohm metre	1011	1-113 × 10
Surface tension	dyn cm - 1	N m 1	10,7	
Thermal conduc-				
tivity	erg s "1 cm "1	W m -1 -2 C -1	10 5	
Viscosity (dyna- mic)	poise	kg m ⁻¹ s ⁻¹	10	
Viscosity (kine- matic)	stokes	$m^2 s^{-1}$	10^{4}	
Volume suscep-				
tibility	Mx Oe ⁻¹	Wb A - 1 m - 1	1.59 × 10 5	

Column A gives the number of CGS (e.m.u.) units in one SI unit.

Column B gives the number of CGS (e.s.u.) units in one CGS (e.m.u.) unit.

The product of column A and column B gives the number of CGS (e.s.u.) units in one SI unit. The numerical values of the two columns are calculated using 2.988 x 10ⁿ m s⁻¹ as the velocity of light.

* The density of water at 4°C is 1000 kg m⁻³ in SI units.

Conversion Factors

```
To change S.I. to British units
             To change British to S.I. units
                                                                                     : × 2.20
                                       : × 0.454
Mass
                                                                                     : × 3.28
                                                                      → ft
                                       : × 0-305
Length
                                                                                     : × 0-621
                                                                      → mi
                                       : × 1.61
                                km
                                                                                     : × 3.28
                                                             m/s
                                                                      → ft/s
                                      : × 0.305
                            → m/s
               ft/s
Speed
                                                                                     : × 2.24
                                                                      → mi/h
                                      : × 0.447
                                                             m/s
                            → m/s
               mi/h
                                                                                     : × 3.28
                                                                      → ft/s2
                                                              m/s2
                                           × 0.305
Acceleration
              ft/s2
                                                                                     : × 7.23
                                                              N
                                                                      → pdl
                                               0.138
               pdl
                                           ×
Force
                                                                                     : × 0.225
                                                              N
                                                                      → lbf
                                               4.45
               lbf
                                                                                     : × 1.45 × 10<sup>-4</sup>
                                                                      → lbf/in2
                                                6890
               lbf/ing
Pressure
                                                                                            23.7
                                                                      → ft pdl
                                               0.042
               ft pdl
Energy
                                                                                            0.735
                                                                          ft lbf
                                                                                        ×
                                               1.36
                                           ×
               ft lbf
                                                                                     : × 9.48 × 10<sup>-4</sup>
                                                                          Btu
                                               1055
               Btu
                                                                                            1.34 \times 10^{-3}
                                                                          hp
                                                746
Power
                hp
                                                                 S.I. → c.g.s.
                     c.g.s. → S.I.
                                                                                     : × 10<sup>5</sup>
                                                                       → dyn
                                           × 10<sup>-5</sup>
                dyn
 Force
                                                9.81 × 10-3 N
                gf
                                                                                     : × 10<sup>7</sup>
                                                                       → erg
                                            ×
                                                 10-7
 Energy
                                                                                     : × 0.239
                                                                       \rightarrow cal
                                                4.186
                                            ×
                                                      m^2 \rightarrow mile^2 : x 3.86 x 10^{-7}
               mile^2 \rightarrow m^2 : x 2.59 x 10^6
Area
                                                      m^2 \rightarrow acre : x 2.47 x 10^{-4}
              acre \rightarrow m<sup>2</sup> : x 4.05 x 10<sup>3</sup>
            1 are = 100 \text{ m}^2; 1 hectare = 10^4 \text{ m}^2 = 2.47 acres
  1 quintal = 1000 \text{ kg}; 1 ton = 100 \text{ kg} = 10 quintals

1 parsec (pc) = 30.857 \times 10^{15} \text{ m}; 1 astronomical unit (Au) = 0.1496 \times 10^{12} \text{ m}
         1 fathom = 6 ft = 1.8288 m; 1 statute mile = 1.609344 km
                     1 nautical mile (international) = 1.852 km
                                           1 \text{ ft}^3 (water) = 6.25 Imper4ial gallons
          1 \text{ ft}^3 \text{ (water)} = 62.5 \text{ lb}
                                                    1 Imperial gallon = 10 lbs
             1 \text{ ft}^3 = 7.48 \text{ U.S. gallons}
                                                      1 Imperial gallon = 277 \text{ in}^3
              1 U.S. gallon = 8.33 lbs
                                                     1 \text{ in}^3 \text{ (water)} = 0.36 \text{ lbs}
              1 U. S. gallon = 231 \text{ in}^3
                     2.3 ft (column of water) = 1 \text{ lb /in}^2 (pressure)
                       1 ft (high column of water) = 0.434 \text{ lb/in}^2
                                   1 \text{ kg} = 2.2056 \text{ lbs}
```

Conversion Factors

```
Units of Length:
                        1 \text{ inch} = 2.54 \text{ cm} = 25.4 \text{ mm}
                        1 foot = 12 inches = 30.48 cm = 304.8 mm
                        1 \text{ yard} = 3 \text{ ft} = 36 \text{ inches} = 91.44 \text{ cm} = 0.914 \text{ m}
                        1 \text{ meter} = 100.0 \text{ cm} = 39.40 \text{ inches} = 3.28 \text{ ft} = 1.09 \text{ yds}
                        1 \text{ mile} = 1.609 \text{ km} = 5280 \text{ ft} = 1760 \text{ yds}
                        1 \text{ km} = 0.621 \text{ miles} = 1000.0 \text{ m}
  Units of Area:
                      1 \text{ inch}^2 = 6.452 \text{ cm}^2
                       1 \text{ ft}^2 = 144 \text{ inch}^2 = 929.03 \text{ cm}^2
                       l acre = 43560 \text{ ft}^2 = 4047 \text{ m}^2 = 0.4047 \text{ hectrares}
                      1 \text{ mile}^2 = 640.0 \text{ acres} = 259.0 \text{ hectares} = 2.59 \text{ km}^2
                      1 \text{ km}^2 = 247.11 \text{ acres} = 100 \text{ hectares}
                      1 hectare = 10,000 \text{ m}^2 = 2.471 \text{ acres}
  Volume:
                     1 \text{ ft}^3 \text{ (of water)} = 7.48 \text{ U.S. gallons} = 28.307 \text{ litre}
                                         = 6.227 lmp. Gallons = 62.43 lbs
                     1 \text{ m}^3
                                        = 1000 litres = 220 Imp. Gallons
                                       = 264 U.S. gallons = 2283 lbs = 25.31 ft<sup>3</sup>
= 43560 ft<sup>3</sup> = 1234 m<sup>3</sup>
                     1 Imp. Gallon of water = 10 lbs = 1.201 U.S. gallons = 4.55 litre
                     1 litre of water = 2.2 \text{ lbs}
 Weight:
                    1 lb = 16 oz = 7000 grains = 453.6 gm
                    1 \text{ gm} = 15.43 \text{ grains}
                    1 short ton = 2000 lbs = 0.9078 metric tons
                    1 \log ton = 2240 lbs
 Power:
                   1 kilowatt = 1.341 horse-power = 737.6 ft. lb/sec
                   1 horse-power = 0.7457 kilowatt = 746 watts = 550 ft.lb/sec
                                                               = 33000 ft.lb/min
 Discharge:
                  1 ft<sup>3</sup>/sec (cusec) = 449 U.S. gallons/min
                                       = 374 Imp. gallons/min
                                      = 1.98 acre ft /day
                                      = 724 acre ft /year
                                      = 28.3 litre/sec
                                       = 0.08 acre ft /hour
                 1 \text{ m}^3/\text{sec} = 22.83 \text{ mgd} = 35.32 \text{ ft}^3/\text{sec}
                1 \text{ mgd} = 1.548 \text{ ft}^3/\text{sec}
Temperature: {}^{\circ}F = 32 + 9/5 \times {}^{\circ}C
```

Equivalence of some usual measurements units to those in the International System (IS)

Init	Symbol	Conversion rate		Unit	Symbol	Conversion rate
			1 - 11	· e =		•
ength			Ť.	Pressure		
Fermi Angstrom	F.	1 F = 1.5 x 10 ⁻¹⁵ m 1 A = 10 ⁻¹⁰ m 1 in = 2.54 x 10 ⁻² m		standard atmosphere		$atm = 1.01325 \times 10^5 Pa$
inch foot	in ft	1 ft = 3.048 x 10 ⁻¹ m 1 yd = 0.9144 m		bar	bar 1	$bar = 1.00 \times 10^5 Pa$
yard	yd	1 ya = 0.9144 m		pound per square inc	Pol	. psi = 6.894757 x 10 ³ Pa
Area		20 2		torr	torr 1	torr = 1.33322 x 10 ² Pa
barn square inch square foot square yard .	b in ² ft ² yd ²	1 b = 10^{-28} m ² 1 1n ² = 6.4516×10^{-4} m ² 1 ft ² = 9.290304×10^{-2} m ² 1 yo ² = 8.361274×10^{-1} m ²		7.	wrice, heat tra	27
			•	energy/ unit area	btu/it² 1	.135653 x 10 ⁴ J/m ²
Volume barrel		i barrel = $1.589873 \times 10^{-1} \text{ m}^3$ l in ³ = $1.638706 \times 10^{-5} \text{ m}^3$		thermal conductivi	ty h . ft . of	1 btu/(h . ft . ^O F) = 1.7307 W/(m . K)
cubic inch cubic foot cubic yard	in3 ft3 yd3	$\begin{array}{l} 1 \text{ ft}^3 = 1.636768 \times 10^{-2} \text{ m}^3 \\ 1 \text{ ft}^3 = 2.831685 \times 10^{-2} \text{ m}^3 \\ 1 \text{ yd}^3 = 7.645549 \times 10^{-1} \text{ m}^3 \end{array}$	*	thermal diffusivit	ft ² /h	$1 \text{ ft}^2/h = 2.580640 \times 10^{-5} \text{ m}^2/\text{s}$
Маве				thermal resistivit	y OF . h . ft ²	1 °F . h . ft ² /btu = 1.762280 x 10 ⁻¹ K . m ² /W
atomic mass t	16	1 $u = 1.660566 \times 10^{-27} \text{ kg}$ 1 $1b = 2.814952 \times 10^{-2} \text{ kg}$ 1 $ton(s) = 9.071847 \times 10^{-2} \text{ kg}$		specific heat	cal/(g . °C)	$1 \text{ cal/(g . }^{\circ}\text{C}) = 4.186800 \times 10^{3} \text{ J/(kg . K)}$
ton (short) ton (long)	-	1 ton(1) = 1.016047 x 10 ³ kg		heat flow	h · ft ^Z	1 btu/(h . ft^2) = 3.155 x 10^{-8} W/m ²
Temperature				dynamic	cP	1 centipoise =
degree Celsius	oC	$T_{K} = T_{C} + 273.15$		viscosity		1 x 10 ⁻³ Pa . s
dr:gree Fahrenheit	oF	$T_{K} = (T_{F} + 459.67)/1.8$		Radioactiv	Ci	1 Ci = 3.7 x 10 ¹⁰ Bq
degree Fankine	oR	$T_{K} = T_{R}/1.8$		roentgen rad rem	R rad rem	1 R = 2.579760×10^{-4} C/k 1 rad = 10^{-2} Gy 1 rem = 10^{-2} Sv
Energy				-	•	
British thermal unit	btu t	1 btu = 1.055056×10^3 J		Uni IS	t Symbol IS	
calorie	cal	1 cal = 4.186800 J			re. m	
electron vo.	lt eV	1 eV = 1.602190 x 10-19 J			are metre m2	
erg	erg .	$1 \text{ erg} = 1.0 \times 10^{-7} \text{ J}$			ic metre m ³	
kilowatthou	r kWh .	$1 \text{ kWh} = 3.6 \times 10^6 \text{ J}$			ogram kg	
				kel		
Power				jou.		
British thermal unit/hour	btu/h	1 btu/h = 2.930711 x 10-1 W		wat		
calorie/ second	cal/s	1 cal/s = 4.186800 W			querel Bq lomb/kg C/kg y Gy	
horse power	r hp	1 hp = $7.456999 \times 10^2 \text{ W}$		sie	vert Sv	

Energy, Work, Heat

The electron volt (eV) is the kinetic energy an electron gains from being accelerated through the potential difference of one volt in an electric field. The Mev is the kinetic energy it gains from being accelerated through a million-volt potential difference. The last two items in this table are not properly energy units but, are included for convenience. They arise from the relativistic mass-energy equivalence formula E = mc, and represent the energy released if a kilogram or atomic mass unit (ami) is destroyed completely.

		Btu	erg	ft-1b	hp-hr	ft-1b hp-hr JOULES Cal	Cal	kw-hr	ev	Mev	kg	amu
-	1 British thermal unit =	1	1.055		777.9 3.929		252.0	1055 252.0 2.930 6.585 6.585 x10 ⁻¹⁴ x10 ⁻²¹ x10 ¹⁵	6.585 x10 ²¹	6.585 x10 ¹⁵	1.174, 7.074 x10-14 x10 ¹²	7.074 x1012
~	1 erg =	9,481	-	7.376	1	10-7	10-7 2,389	2.778 6.242 x10-14 x10 ¹¹	6.242 ×10 ¹¹	6.242 ×10 ⁵	1.113 x10-24	670.5
4	1 foot-pound =	1.285 1.356	0	-	5.051 x10-7	1.356	0.324	3.766 8.464 x10-7 x10 ¹⁸	1	42	1.509 x10-17	9.092 x109
~	1 horsepower-hour=	2545 2	2.685 1.986 ×1013 ×106	1.980 x106	-	2.685 6.414 x10 ⁶ x10 ⁵	2.685 6.414 x106 x105	0.7457 1.676 x10 ²⁵		1.676 x10 ¹⁹	2.988 x10-11	4- 14
·-	1 Joule =	9.481 ×10-4	107	0.7376	0.7376 3.725 x10-7	1		2.778 x10-7	6.242 ×1018	6.242 x10 ¹²	1.113 x10-17	
,	1 calorie =	3.968 4.186 3.087	.186 10 ⁷	3.087	1.559 x10-6	4.186	-	1.163 x10-6	2.613 x10 ¹⁹	2.613 ×10 ¹³	4.659 x10-17	
1	1 kilowatt-hour =	3413 3	3	2.655 x106	1.341	3.6 x106	8,507	-	2,247 x10 ²⁵	2.270 x10 ¹⁹	4.007 ×10-11	
	1 electron volt =	1.519 1.602 1.182 5.967 x10 ⁻²² x10 ⁻¹² x10 ⁻¹⁹ x10 ⁻²⁶	1.602 7	1,182 x10-19	5.967 ×10-26	1.602 3 5 x10-19	3.827 3.10 ⁻ 20	1.602 3.827 4.450 x10-19x10-20 x10-26	-	10-6	1.783 x10-36	
200	1 million electron volts=	1.519 1.602 1.182 x10 16x10 6 x10 13	602 10-62	1.182 ×10-1	5.967 ×10-20	0	3.827 3x10-14	4.450 x10-20	100	-	1.783 x10-30	x10-3
	1 kilogram =	x10 ¹³ x10 ²³ x10 ¹⁶	x1023	5.629 x1016	3°348	x1016	×1016	x1010		x10 ²⁹		x1026
	1 atomic mass unit =	1.415 1.492 1.100 5.558 1.492 3.564 x10-13x10-3 x10-10 x10-17 x10-10 x10-11	10-3	1.100 x10-10	5.558 x10-11	7 ×10 10,	3.564 x10-11	4.145 x10-17	9.31 x10 ⁸	931.0	1.660 x10-27	-

1 m-kgf= 9,807 joules 1 watt-sec = 1 joule = 1 nt-m 1 cm-dyne = 1 erg

P. 15. 15!

Electromagnetic Spectrum

Rays	Frequency	Wave-length	Photon Energy
Cosmic rays	10 ²³ Hz	10 ⁻¹¹ cm belo	ow10 ⁸ to 10 ²⁰ eV 10 ⁵ to 10 ⁷ eV
V-rays	6x10 ²⁰ to 10 ¹⁸ Hz		
X - rays	6x10 ¹⁹ to 6x10 ¹⁵ Hz	10 ⁻⁹ to 10 ⁻⁵ cm	10 to 10 ⁵ eV
Ultra-violet	2x10 ¹⁶ to 8x10 ¹⁴ Hz	1.4x10 ⁻⁶ to4x10 ⁻⁵ cm	1 to 10 ² eV
Visible	8x10 ¹⁴ to 4x10 ¹⁴ Hz	4x10 ⁻⁵ to 8x10 ⁻⁵ cm	1 eV
Infra-red(heat radiation)	4x10 ¹⁴ to 3x10 ¹¹ Hz	8×10^{-5} to 0.04 cm 10^{-6} to 10^{-4} cm	10 ⁻³ to 1 eV
Microwaves	10 ¹³ to 10 ⁹ Hz	10 to 10 cm	10^{-2} to 10^{-3}
Electrical radio waves	10^{13} to 10^{3} Hz 7×10^{9} to 2×10^{6} Hz	0.01cm to 100 Km	10 ⁻¹⁰ to 10 ⁻¹ eV 10 ⁻³ to 10 ⁻¹⁰ eV 10 ⁻¹⁴ to 10 ⁻¹² eV
TV, Radar Micropulsation	7 x 10° to 2 x10°Hz	4x108 to 3t.5x10-4m 1x10 to 5x10 m	10-14 to 10-17 eV

Spectrum of visible portion

Colour of light	Wavelength x10-7m	Frequency x10 ⁷⁴ Hz
Red	6.470 to 7.000	4.634 to 4.284
Orange	5.850 to 6.470	5.125 to 4.634
Yellow	5.750 to 5.850	5.215 to 5.125
Green	4.912 to 5.750	6.104 to 5.215
Blue	4.240 to 4.912	7.115 to 6.104
Violet	4.000 to 4.240	7.495 to 7.115

Radio and TV waves

Range	Frequency	Wave-length
TUHF	2.1x10 ⁸ to 6.9x10 ⁹	.1 to 1 m
≥ VHF	5x10 ⁷ to 1.2x10 ⁸	1 to 10 m
HF (or VL)	5x10 ⁷ to 1.2x10 ⁸ 2x10 ⁶ to 4x10 ⁷	10 to 100 m
FM(frequency modulation)	8.8×10 ⁷ +0.1-08×10 ⁸	1 to 10 m
	5.3x10 ⁵ to 1.605x10 ⁶	200 to 550 m
7 1	2.3x10 to 7.0x10 ⁶	49 to 120 m
SW 1 SW 2	8.8x10 ⁷ to 1.08x10 ⁸ 5.3x10 ⁵ to 1.605x10 ⁶ 2.3x10 to 7.0x10 ⁶ 7.0x10 ⁶ to 22.0x10 ⁶	13 to 41 m
LF	3x10 ⁴ to 3x10 ⁵	1000 to 10,000 m
VLF	3x10 ³ to 3x10 ⁴	10,000 to 100,000 m
ELF(extremely)	to $3x10^3$	100,000 to m

Luminous Efficiency

Source	Luminous Efficiency (lumens/watt)	<u>lumens</u>
tungsten lamp (watts) 140 75 100	11 14 15	1,40 1,050 1,500
mercury vapour (watts 150 (low) 400 (High)): 13 30	1,950 12,000
sodium vapour, 220 wa	tts 50	11,000
fluorescent lamp (wat	ts): 1+0 50 60	400 1,500 2,400

Length of light waves (specific colours)

Very dark red	0.00081 min	Green	0.00052 mm
Red	0.00065 mm	Bluish green	0.00050 mm
Reddish orange	0.00064 mm	Blue	0.00047 mm
Orange ·	0.00060 mm	Indigo	0.000 ¹ +3 mm
Yellow -	0.00058 mm	Violet	0.0001+1 mm

The Electromagnetic Spectrum (Specific characteristics)

Name	Type of transition	Characteristic temperature (hv/k, °K)	Artificial production	Detection
Gamma rays	Nuclear	10 ⁹ to 10 ¹⁰	Betatron	Geiger and Sci- ntillation Coun- ters, Ionization Chamber
X-rays	Inner Electron	10 ⁸ 10 ⁶ to 10 ⁷	X-ray tube	H H H
Ultra vi olet radiation	n 11		и и	и и и
Visible light	Outer Electron	10 ⁴ to 10 ⁵	Gas discharge, Arcs, Sparks	Photoelectric and Photomulti-
Infrared	Molecular	10 ² to 10 ³	Hot/filaments	plier Cells
radiation	vibration		Mariner W. San	Bolometer,
Microwaves	Molecular	10	Magnetron,	Thermopile
FM and TV	rotation Electron	10 ⁻¹ to 1	Klystron, Tra- veling-wave tube	Crystal
broadcastin	g Spin		Electrical	Electrical
AM broad- casting	Nuclear Spin		circuit,	circuit

39

The 100-year Journey toward Absolute Zero

Date	Investigator	Country	And the second s	Temp. °K
1860	Kirk	Scotland	First step toward deep refrigeration: reached temperatures below freezing point of Hg.	234.0
1877	Cailletet	France	First liquefied oxygen: used throt tling process from pressure vessel, obtaining fine mist only.	90.2
1884	Wroblewski & Olzewski	Poland	First property measurements at low temperatures: used small quantities of liquid $\rm N_2$ and $\rm O_2$.	77.3
1898	Dewar	England	First liquefied hydrogen: used Joule-Kelvin effect and counterflow heat exchanger.	20.4
1908	Kamerlingh- Onnes	Netherlands	First liquefied helium: used same method as Dewar; shortly thereafter, lowered pressure over liquid to get 1°K.	4.2
1927	Simon	Germany & England	Developed helium liquefier: used adiabatic expansion from pressure vessel with liquid H ₂ precooling.	4.2
1933	Giauque & MacDougall	U.S.	First adiabatic demagnetization: Principle first proposed by Giauque and Debye in 1926.	0.25
1934	Kapitza	England & U.S.S.R.	Developed helium liquefier using expansion engine: Made possible liquefaction of helium without liquid H, precooling.	4.2
1946	Collins	U.S.	Developed commercial helium lique- fier: used expansion engines and counterflow heat exchangers.	2.0
1956	Simon & Kurti	England	First nuclear experiments: used adiabatic demagnetization of nuclear stage of a paramagnetic salt.	10 ⁻⁵
1960	Kurti	England	Reached lowest temperature so far: Nuclear cooling methods.	10 ⁻⁶

Cooling Agents

First constituent S	econd constituent	Lowest temperature, °C
NHLCl	Ice	-15.4
NaCl (1 part)	Ice(2parts)	-21
Alcohol	Ice	-30
CaCl ₂ .6H ₂ O(4parts) Ice(3parts)	- 55
Alcohol	Solid CO2	- 72
Ether Liquid Oxygen Liquid Nitrogen	Solid CO ₂	-77 -183 -196 -269

The order of magnitude of various time intervals ranging from the longest to the shortest. The representative intervals are approximate.

The order of magnitude of some distances observable in the physical world.

tative intervals	are approximate.	2	2	х	10 ²⁶ Meters	"Radius of Universe
6 x 10 ¹⁷ Seconds	Age of universe	2		х	10 ²²	Distance to nearest
2 x 10 ¹⁷	Age of earth				46	galaxy
2×10^{13}	Time of man on earth	1 4		x	1010	Distance to nearest star
2 x 10 ¹¹	Age of human civilization	2	2	х	1011	Distance to sun
2×10^9	Human lifetime	7		X	108	Radius of sun
3 x 10 ⁷	One year	6	5	X	106	Radius of earth
9 x 10 ¹⁴	One day				101	Highest mountain
5×10^2	Light travels from				10 ²	Football field
2	sun to earth	2)	х	100	Man
8 x 10 ⁻¹	Time between heartbeats	1	3	x	10 ⁻¹ +	Thickness of paper
1 x 10 ⁻⁵	Duration of stroke	1		X	10-8	Small virus
	flash	5	,	x	10-11	Diameter of atom
3 x 10 ⁻⁹	Light travels one	1		х	10-15	"Radius of proton
2 x 10 ⁻¹⁶	Half-life of charged pion				******	****
4×10^{-19}	Light crosses atom					
2×10^{-23}	Light crosses small nucleus					

Some Temperatures (°K)

	474
Carbon thermonuclear reaction	5 x 10 ⁸
Helium thermonuclear reaction	108
Solar interior	107
Solar corona	10 ⁶
Shock wave in air at Mach 20	2.5×10^{14}
Luminous nebulae	10 ^l +
Solar surface	6×10^{3}
Tungsten melts	3.6×10^3
Lead melts	6.0×10^2
Water freezes	2.7×10^2
Oxygen boils (1 atm)	9.0×10^{1}
Hydrogen boils (1 atm)	2.0×10^{1}
Helium (He ¹) boils at 1 atm	4.2
He boils at attainable low pressure	3.0 x 10 ⁻¹
Adiabat. demag. of paramag. salts	10-3
Adiabatic demagnetization of nuclei	10-6

41
Elementary Particles

	ETEI	entary ra	releas			
Particle Name	Symbol	Mass (GeV)	Mass (electron		Clectric charge	
BARYONS						
Proton	р	0.93826	1,836	4.5	+1	stable38)
Neutron	n	0.93955	1,837		0	1.01x10 ³
Lambda Hyperon	\wedge°	1.1156	2,180		О	2.5x10 ⁻¹⁰
Sigma Hyperon	E	1.1974	2,300		-1	0.8x10 ⁻¹⁰
Sigma Hyperon	$ \leq^{\circ} $	1.1926	2,290		0	less than 10 ⁻¹¹
Sigma Hyperon	€	1.1974	2,300		-1	1.65x10 ⁻¹⁰
Xi Hyperon	<u> </u>	1.315	2,590		0	3x10 ⁻¹⁰
Xi Hyperon	=-1	1.321	2,600		-1	1.7x10 ⁻¹⁰
MESONS						
Pi meson (Pion)	π±	0.13958	273		+1	2.61x10 ⁻⁸
Pi meson	TO	0.13497	264		0	0.9x10 ⁻¹⁶
Kappa meson (Kion)	, K [±]	0.4938	920-960		+1	1.23x10 ⁻⁸
Kion short lived	K _s °	0.4978	974		0	0.87x10 ⁻¹⁰
Kion long lived	K°	0.4978	974		0	5.2x10 ⁻⁸
Eta meson	η	0.5486	1070		0	J. 2X10
Theta meson	o°	000,100	965		0	1.5x10 ⁻¹⁰
Theta meson	0+		955		<u>±1</u>	10-9
LEPTONS		Moss				, -
THE LOND		Mass Me	eV/c ² }			
Electron neutrin	o ગે _e		out 0		0	stable
Electron	ene-	C	.511		-1	stable
Muon neutrino	Du	ah	out		0	stable
Muon	n or m		6.6		-1	2.2x10 ⁻⁶
	/ /					
Tau neutrino	24	less t	han 164		0	stable
Tau	2 of 5_	1	,784		-1	
QUARKS	Mass/	GeV				
Up	u 0.3	5	310		+3	
Down	d 0.3	5	310		-1/3	
Charm	c 1.5	1,	500		+2/3	
Strange	s 0.5		505		-1/3	
Top/Truth	t 30-50	Ну	2,500 pothetical particle		+3	
Bottom/Beauty	b 4.7		5 , 000		-1/ 3	

P	The particle	range of elementary- energies met in physics.	Pluto	Neptune	Uranus	Saturn	Jupiter	Mars	Earth	Venus	Mercury	Planet	
	10 ¹⁷ - 10 ¹⁶ - 10 ¹⁵ - 10 ¹⁴ - 10 ¹³ -	← 1 joule	W+31-7369	4462-4534	2734-3004	1347-1507	741-816	207-249	147-152	107-109	46-70	Distance from the Syn x10 m	
	10 ¹² - 10 ¹¹ - 10 ¹⁰ - 10 ¹⁰ - 10 ⁸ - 10 ⁷ - 10 ⁶ - 10 ⁶ -	←1 erg, Batavia accelerator 1 Gev, mc ² of proton ←mc ² , pion	0.31	3.87	3.93	9.01	10.77	0.53	1.00	0.95	0.38	Equatorial radius in proportion to the Earth	Planets of Solar System
E	10 ⁵ -	1 Mev, typical nuclear decay2enery ← mc, electron	0.03	47.00	55.00	750.00	1,300.00	0.15	1.00	0.89	0.05	Volume in proport. to Earth	ar System
	10 ³ - 10 ² 10 - 1 - 10 ⁻¹ 10 ⁻²	1 KeV x-ray photon Binding energy of hydrogen Molecular kinetic energy at room temperature	248 years, 157 days	164 years, 288.56 days	84 years, 3.66 days	29 years, 168 days	11 years, 314.13 days	1 year, 321 days	365,25 days	224.7 days	88 days	Period of revolution Period of rotation	
			6.38 days	15.82 hours	10.83 hours	10.33 hours	9.94 hours	24.62 hours	23.93 hours	243.17 days	58.6 days	Period of rotation	

Fundamental Constants

```
Velocity of light, c
                                   = 2.9979 \times 10^8 \text{ ms}^{-1} = 186,000 \text{ miles/s}
 and radio waves
                                   = 1.6021 \times 10^{-19} \text{C}
Elementary charge, e
                                 = 9.1091 \times 10^{-31} \text{kg}
Electron rest mass, m
                                   = 1.6725 \times 10^{-27} \text{kg} = 1.008 \text{ amu} = 1836 \text{ electron masses}
Proton rest mass, m
                                 = 1.6748 \times 10^{-27} \text{kg} = 1837 \text{ electron masses}
= 6.6256 \times 10^{-34} \text{ J.s.}
Neutron rest mass, mn
 Flanck's constant, h
e/m for electron, e/ma
                                 = 1.7588 \times 10^{11} \text{kg}^{-1} \text{C}
                                   = 1.0974 \times 10^{7} \text{m}^{-1}
Rydberg constant, R
Avogadro constant, No.
No. of molecules/gm-mol. = 6. 0225 \times 10^{23} \text{mol}^{-1}
Boltzmann constant, k=R/No= 1.3805 x 10-23 J Ko-1
Universal gas constant, R = 8. 3143 J Ko-1 mol-1
Vacuum permittivity, \epsilon_{o} = 8.8544 \times 10^{-12} \text{ N}^{-1}\text{m}^{-2}\text{C}^{2}
                                  = 1.3566 x 10<sup>-6</sup> m kg C<sup>-2</sup>
Vacuum permeability.
Acceleration of gravity, g= 9.7805 ms 2
Gravitational constant, G = 6.673 \times 10^{-11} \text{ N-m}^2/\text{kg}^2
                                   = 96,520 C gm<sup>-1</sup>mol<sup>-1</sup>
One atomic mass unit (c') \mu = 1.66 \times 10^{-27} \text{kg} = 931 \text{ MeV} = 1.49 \times 10^{-10} \text{ J}
                                  = 336000 J kg<sup>-1</sup>
Heat of fusion of ice
Heat of vaporization
                                   = 2263800 J kg-1
of water
                                   = 1.501 x 10-12 erg
1 electron volt
Ratio of proton mass to
                                   = 1836.14
electron mass, mo/mo
                                  = 6.4 \times 10^6 \text{m} = 3959 \text{ miles}
Hadius of the Earth
                                  = 6 \times 10^{2l_{+}} \text{kg}
Mas of the Earth
Stefan-Boltzmann const. = 5.6697 x 10<sup>-8</sup> W m<sup>-2</sup>Ko-4
Head orbital speed of
earth
                                  = 29,770 \text{ m/sec} = 18.50 \text{ miles/sec}
Bohr magneton, \mu_B = eh/2m = 9.274 x 10<sup>-5</sup> radians/sec nuclear magneton
nuclear magneton, p_N = \frac{eh}{2m_p} = 5.051 \times 10^{-27} JT^{-1}
neutron-Hatem mass
                                  = 0.782 \text{ MeV/c}^2
difference m - Mu
```

Standard Prefixes

Multiple and Submultiple units; as a result of the Eleventh General Conference on Weights and Measures (1960), as amended in 1962 by the Executive Beard. 10011

Profix .	Symbol .	Multiplication	Factor
atto	a	10-18	
femto	f	10-15	
pico (or micromicro)		10-12	
nono (or millimicro)	n, m	10-9	
micro		10-6	
milli	m	10 ⁻³	
centi	С	10-2	
deci	d	10-1	
'no prefix'		1	
deka	da	10	
ling to	h	10 ²	
kilo	k	103	
mega	M	10 ⁶	
miga (or kilomega)	G	109	
tera (or megamega)	T, MM	1012	
peta	P	10 ¹⁵	
exa	E	10 ¹⁸	

fermi = 1×10^{-15} m

angstrom, $\Lambda^{\circ} = 1 \times 10^{-10} \, \text{m}$

Beaufort scale

A wind scale introduced by Admiral Sir Francis Beaufort (1774-1857) in which numbers represent the wind velocity. The scale is first mentioned in the admiral's diary in January 1806 and its general use was suggested in an article in the *Nautical Magazine* in 1832. The Navy adopted the scale in 1838 and the Board of Trade have used it since 1862.

The scale is given in the following Table.

The Beaufort wind scale

The Beaujor	i wina scare	
Number	Description	Wind speed
		(miles / hour)
0	Calm	< 1
1	Light air	1 - 3
2	Light breeze	4 - 7
3	Gentle breeze	8 - 12
4	Moderate breeze	13 – 18
5	Fresh breeze	19 – 24
6	Strong breeze	25 - 31
7	Moderate gale	32 - 38
8	Fresh gale	39 – 46
9	Strong gale	47 – 54
10	Whole gale	55 – 63
11	Storm	64 – 72
12	Hurricane	> 72

The number on the Beaufort scale is someties called the Beaufort number B and is related to the wind velocity V in miles per hour by the empirical formula $V = 1.87 \, B^{3/2}$.

THE EARTH

Zone	Depth(km)	th depth Density(kg m)						
	0	2600	9.82							
	60	3390	9.85							
	150	3400	9.88							
	350	3580	9.95							
Mantle	500	3830	3830 9.98							
	1000	4560	9.96							
	1500	4825	9.92							
	2000	5080								
	2886	5520	10.74							
	//	1 9900	//							
	3500	10680	9.32							
	4000	11410	7.96							
Core	4500	11850	6.64							
Core	5000	12200	4.80							
	5150	12280	4.62							
Inner		13000	//							
Core	6371	13500	o o							
Other physic		15500	<u>U</u>							
Land	area	$1.49 \times 10^{14} \mathrm{m}^2$ (2)	9.2 % of Earth's surfa	ice)						
Land	mean height	840 m	2.2 70 OI LUITII 5 50010	.007						
	greatest height	8840 m								
	greatest neight	0010 111								
Oceans:	area	$3.61 \times 10^{14} \mathrm{m}^2$ (70	0.8 % of Earth's surfa	ice)						
Oceans:	area mean depth	Carried Control of the Control of th	0.8 % of Earth's surfa	ice)						
Oceans:	mean depth	3800 m	0.8 % of Earth's surfa	ice)						
Oceans:		Carried Control of the Control of th	0.8 % of Earth's surfa	ice)						
Oceans:	mean depth	3800 m 10550 m	0.8 % of Earth's surfa of of Earth's mass)	ice)						
Atmosphere:	mean depth greatest depth mass epths of the ocean	3800 m 10550 m 5.27 x 10 ¹⁸ kg (10 s	0 ⁻⁶ of Earth's mass)	ice)						
Atmosphere: Areas and de Oceans	mean depth greatest depth mass epths of the ocean Area(n	3800 m 10550 m 5.27 x 10 ¹⁸ kg (10 s nile ²)	of Earth's mass)	ice)						
Atmosphere: Areas and de	mean depth greatest depth mass epths of the ocean	3800 m 10550 m 5.27 x 10 ¹⁸ kg (10 s nile ²)	0 ⁻⁶ of Earth's mass)	ice)						
Atmosphere: Areas and de Oceans	mean depth greatest depth mass epths of the ocean Area(n	3800 m 10550 m 5.27 x 10 ¹⁸ kg (10 s nile ²) 000	of Earth's mass)	ice)						
Atmosphere: Areas and do Oceans Pacific	mean depth greatest depth mass epths of the ocean Area(n 86,634	3800 m 10550 m 5.27 x 10 ¹⁸ kg (10 s nile ²) G	oreatest depth (ft) 30,000	ice)						
Atmosphere: Areas and do Oceans Pacific Atlantic	mean depth greatest depth mass epths of the ocean Area(n 86,634 41,324, 29,340 7,500,	3800 m 10550 m 5.27 x 10 ¹⁸ kg (10 s sile ²) 000 000 0000 0000	orea from the second of the se	ice)						
Atmosphere: Areas and do Oceans Pacific Atlantic Indian	mean depth greatest depth mass epths of the ocean Area(n 86,634 41,324, 29,340	3800 m 10550 m 5.27 x 10 ¹⁸ kg (10 s sile ²) 000 000 0000 0000	orea from the second of the se	ice)						
Atmosphere: Areas and doceans Pacific Atlantic Indian Antarctic Arctic	mean depth greatest depth mass epths of the ocean Area(n 86,634 41,324, 29,340 7,500, 4,000	3800 m 10550 m 5.27 x 10 ¹⁸ kg (10 s nile ²) (000 000 000 000 000 000	oreatest depth (ft) 30,000 27,365 18,582 25,200	ice)						
Atmosphere: Areas and doceans Pacific Atlantic Indian Antarctic Arctic	mean depth greatest depth mass epths of the ocean Area(n 86,634 41,324, 29,340 7,500, 4,000, of the atmosphere	3800 m 10550 m 5.27 x 10 ¹⁸ kg (10 s mile ²) (2 000 000 000 000 000	oreatest depth (ft) 30,000 27,365 18,582 25,200	ice)						
Atmosphere: Areas and doceans Pacific Atlantic Indian Antarctic Arctic Composition Parts in 10 ⁶ o	mean depth greatest depth mass epths of the ocean Area(n 86,634 41,324, 29,340 7,500, 4,000, of the atmosphere f dry air by volume	3800 m 10550 m 5.27 x 10 ¹⁸ kg (10 ¹⁸ kg	or of Earth's mass) ireatest depth (ft) 30,000 27,365 18,582 25,200 9,000							
Atmosphere: Areas and doceans Pacific Atlantic Indian Antarctic Arctic Composition Parts in 106 o N2	mean depth greatest depth mass epths of the ocean Area(n 86,634 41,324, 29,340 7,500, 4,000, of the atmosphere of dry air by volume of the atmosphere of the atmosphere of dr	3800 m 10550 m 5.27 x 10 ¹⁸ kg (10 s nile ²) G 0000 0000 0000 0000 0000 0000	or of Earth's mass) ireatest depth (ft) 30,000 27,365 18,582 25,200 9,000 He CH ₄	Kr						
Atmosphere: Areas and doceans Pacific Atlantic Indian Antarctic Arctic Composition Parts in 10 ⁶ o	mean depth greatest depth mass epths of the ocean Area(n 86,634 41,324, 29,340 7,500, 4,000, of the atmospher f dry air by volume 02 A 500 9300	3800 m 10550 m 5.27 x 10 ¹⁸ kg (10 ¹⁸ kg	or of Earth's mass) ireatest depth (ft) 30,000 27,365 18,582 25,200 9,000	Kr 1.14						

Some Gravity Base Stations

Some gravity base stations established by the Geological Survey of Pakistan up to 1963 are listed in the table below. Karachi Air Port gravity Station has been tied to Teddington and Washington Pendulum Stations (Woolard, 1950). They have started laying out gravity base lines connected to gravity value of 978.9630 cm/sec² at Karachi Air Port. It is taken for base connections in Pakistan, in order to affect the projected schedule of preparing regional gravity maps of the country. It is an extension work carried out by Survey of Pakistan, the Geophysical Institute and Punjab University.

Measurements were made with a temperature controlled Worden Gravimeter, Master Model No. 551. The calibration factor of 0.2547 milli-gals/scale [gals = $\rm cm/sec^2$] division was determined by the manufacturers using their standard practice on pendulum bases near Houston (U.S.A.).

Station (place)	'g'(cm/sec ²)	Station (place)	'g'(cm/sec ²)
Bahawalpur (CMH)	979.2021	Malakwal (Railway Station)	979.4743
Bannu (Mission Bungalow)	979.3470	Mandi Bahauddin(// //)	979.4012
Bhalwal (Civil Rest House)	979.4225	Mansehra (Dak Bungalow)	979.2452
Chiniot (PWD bungalow)	979.4617	Multan (Air Port)	979.2553
Dera Ghazi Khan(// //)	979.1976	Muree (Survey of Pakistan)	979.0440
Dinga(Islamia High School)	979.3938	Peshawar(Air Port)	979.3950
Ghotki (Railway Station)	978.1502	Rabwah (Railway Station)	979.4733
Gujar Khan (// //)	979.3329	Islamabad (Air Port)	979.3501
Hyderabad (// //)	979.9750	Sadiqabad(at 264.29 elev)	979.1510
Jhang(Police Line Compound)	979.3719	Sargodha (Air Port)	979.4680
Jhelum(B.M.in Cantt. Church)	979.3828	Sahiwal (Railway Station)	979.3254
Kabir Wala(Dak Bungalow)	979.2847	Burewala (obs-g-)	979.2802
Lahore(Air Port)	979.3920	Kharian (Forest Office)	979.3781
Mangla(Dam Rest House)	979.3718	Jalalpur Jattan(obs-g-)	979.3688

To find 'actual value' of g at your place:

- 1) By repeated method: i.e. take repeated readings by the freefall or the simple pendulum method, then take their average value.
- 2) Make a <u>standard reading</u>: i.e. take average reading of many efficient students of your lab constituting many months back.
- 3) By <u>Gravimeter</u>: Arrange to bring some standard gravimeter from a Geophysicists and take the precise value of 'g' at your place.

^{*} Special Courtesies to Russell Nazir Ullah, Director, Geological Survey of Pakistan, Quetta, who helped to get reach the records of Geological Survey of Pakistan, (Vol. XI, Part 2).

THE 24 NEAREST STARS

Name	Distance light-years	Transverse velocity km/sec	Absolute magnitude
Sun			+4.8
α Centauri	4.3	23	4.7
Barnard's star	6.0	90	13.2
Wolf 359	7.7	54	16.6
Luyten 726-8	7.9	38	15.6
Lalande 21185	8.2	57	10.5
Sirus	8.7	16	11.6
Ross 154	9.3	9	13.3
Ross 248	10.3	23	14.7
∈ Eri	10.8	15	6.2
Ross 128	10.9	22	13.5
61 Cyg	11.1	84	7.9
Luyten 789-6	11.2	53	14.5
Procyon	11.3	20	13.1
∈ Indi	11.4	77	7.0
Σ 2398	11.6	38	11.1
Groombr. 34	11.7	49	10.3
τ Cet	11.8	33	5.8
Lacaille 9352	11.9	118	9.4
+5° 1668	12.4	67	12.0
Lacaille 8760	12.8	64	8.6
Kapertyn's star	13.0	166	11.2
Ross 614	13.1	18	13.1
Kruger 60	13.1	16	13.4

Important Space Probes

Name	Launch date	Comments
Pioneer 5	March 11, 1959	First deep-space probe; magnetic fields and cosmic rays
Mariner 2	August 26, 1962	Venus probe
Mariner 4	Nov 28, 1964	Mars encounter, photography, magnetic fields, cosmic rays
Luna 9	Jan 31, 1966	First photographs of lunar surface
Surveyor I	May 30, 1966	Soft landing on moon; environmental data and photography
Mariner 5	June 14, 1967	Venus probe; atmospheric and magnetospheric data
Mariner 6	Feb 25, 1969	Photography and analysis of surface and atmosphere of Mars
Venera 7	Aug 17, 1970	Lander capsule transmitted 23 min from surface of Venus
Luna 16	Sept 12, 1970	Reentered Sept 24, uncrewed Moon lander touched down on Sea of Fertility Sept 20, returned lunar soil samples
Mars 2	May 19, 1971	First Soviet Mars landing
1.una 20	Feb 14, 1972	Recovered Feb 25, returned lunar sample
Pioneer 10	March 2, 1972	Jupiter encounter; transjovian interplanetary probe
Venera 8	March 27, 1972	Venus landing July 22, 1972
Mariner 10	Nov 3, 1973	Venus and Mercury encounter
Helios	Dec 10, 1974	Close solar probe
Viking 2	Sep 9, 1975	Mars lander and orbiter
Voyoger 2	Aug 20, 1977	Continuing to Uranus and Neptune
Voyager 1	Sep 5, 1977	Returned encounter information concerning Jupiter, Saturn,
Pioneer Venus Multi-Probe B	Aug 8, 1978 us	and their satellites and rings Penetration of Venus atmosphere by four probes, returned atmospheric data

The American astronaut Ed Aldrin, pilot of the Armir 13 expedition, the first to land men on the Mion on 21 July 1869, photographed by the collinger Neal American in find of the American flag planted in the lunar soil.

The most important manned spaceflights

	The most impo	rta	it mainted sp	acerrights
mission	date	cre	<u>ew</u>	details of the flight
VOSTOK-V	OSKHOD PROGRAMME (RU	SSI	AN)	*
Vostok 1	12 April 1961	Υ.	Gagarin	Oribital flight of 1 h 48 min; first man sent into space.
Vostok 6	16-19 June 1963	٧.	Tereshkova	First and only woman astronaut to date.
Voskhod	2 18-19 March 1965	P. A.	Belyaev, Leonov	Multi-manned space capsule; first space walk by an astronaut(Leonov) for about 10 min.
MERCURY I	PROGRAMME (AMERICAN)			
Mercury (6 20 February 1962	J.	Glenn	Oribital flight; First American astronaut; lasted 4 h 55 min.
GEMINI P	ROGRAMME (AMERICAN)			
Gemini 3	23 March 1965		Grissom, Young	First American multi-manned capsule.
Gemini 4	3-7 June 1965		McDivitt, White	White left capsule for 20 min; tests of guidance and navigation systems.
Gemini 8	16-17 March 1966		Armstrong, Scott	First docking in orbit with a rocket (Agena).
APOLLO PR	ROGRAMME (AMERICAN)			M1 42
	3 21-27 December1968	J.	Borman, Lovell, Anders	Manned oribital test flight around the Moon, experiments in changing lunar orbits.
Appollo 1	11 16-24 July 1969	E.	Armstrong, Aldrin Collins	First Moon landing on 21 July; Moon walk by Armstrong and Aldrin; samples of lunar rocks taken.
Appollo 1	17 7-19 December1972	R.	Cernan, Evans, Schmitt,	Landing of Cernan and Schmitt on the Moon; stayed for 75 h; explora- tion and collection of many rock samples; installation of instru- ments to measure seismic phenomena and radiation.
APPOLLO SOYUZ	15-22July 1975 <u>18</u> -	D.	Brand, Slayton, Stafford	Joint American and Soviet Appollo- Soyuz programme: Apollo caught up and docked with Soyuz which was already in oribit on 17 July; exchange of equipment and joint work; separated on 19 July.
SOYUZ PRO	OGRAMME (RUSSIAN)	1		
	11-16 October 1969 12-17 October 1969	Kul	Shonin, V. Dasov, A. Fil- Chenko, Volk,	The three spacecraft, after meeting in oribit, were used for experiments; electric welding expts
Soyuz 8	13-18 October 1969	Goi	rbat, Yeli.	conducted first time in space.
Soyuz 35	8 April-11 Octo- ber 1980		Popov, Ryumin	The spacecraft docked with oribital station Salyut 6; crew remained for 185 days without a break.

Dates launched and recovered	Designation and crew	Weight. Ib	Revo- lutions	Max, distance from Earth, mi	Duration	Remarks
.978 (cont.) June 27-July 5	Soyuz 30 Pyotr L. Klimuk	14,400	125	225	7 days 22 h 4 min	Слем transferred to Sulyur 6 to join Soyuz 29 стем. Second non-Sowet cosmonaut Hermassewsid (Poland).
Aug. 26-Nov. 2	Mirosiav Hermaszewski Soyuz 31 Valery F. Bykovsky Sigmund Jaehn	14,400	1070	221	67 days 20 h 14 min Crew duration: 7 days 20 hr 49 min	Crew transferred to Salyut 6 to join Soyuz 29 crew. Third non-Soviet cosmonaut. Jaehn (East Germany). Crew returned with Soyuz 29 spacecraft.
1979 Feb. 25—June 13	Soyuz 32 Vladimir Lyakhov	14,400	1711	232	108 days 4 h 24 min Crew duration:	Gew transferred to Salput 6 to setablish new endurance record (175 days). Returned on Aug. 19 with Soyu. 24, Soyu. 27 eteumed uncrewed. Resupplied by Progress 5 fluinched Mar. 12) and Progress 6
Apr. 10-12	Valery Ryumin Soyuz 33 Nikolai Rukavishnikov	14,400	31	221	175 days 1 day 23 h 1 min	leathched ring 1.01. Docking with Salyur 6 failed. Crew returned to Earth. Fourth non-Soviet cosmonaut: Ivanov (Bulgaria).
June 6-Aug. 19	Georgi Ivanov Soyuz 34	14,400	1152	257	73 days 18 h 17 min	Launched unrewed and docted to Salyur 6. Returned Soyuz 32 crew. Resupplied by Progress 7 (launched June 29). New type of uncrewed Soyuz (Soyuz TJ) launched Dec. 16 on flight test to dock with Salyur 6.
1980 Apr. 9—June 3	Soyuz 35 Leonid Popov Valery Ryumin	14,400	698	220	55 days 22 min Crew duration: 184 days 20 h 12	Crew transferred to Salyuz 6 for record-duration mission (184 days). Returned Oct. 11 with Soyuz 37 spacecraft. Resupplied by, Progress 8 launched Mar. 271, Progress 9 (launched Apr. 271, Progress 10 (launched June 29), Progress 11 (launched Sept. 28).
May 26⊸July 31	Soyuz 36 Valery Kubasov	14,400	1040	220	65 days 20 h 54 min	Crew transferred to Salyuz 6 to join with Soyuz 35 crew. Returned June 3 with Soyuz 35 spacecraft. Fifth non-Soviet cosmonaut: Farkas (Hungary).
June 5–9	Soyuz TZ Yuriy Malyshev	14,400	62	220	3 days 22 h 41 min	First crewed test of new type spacecraft. Crew transferred to $Salyut$ 6 on June 6. Tenth crewed visit to $Salyut$ 6.
July 23-Oct. 11	Vladimir Aksenov Soyuz 37 Viktor V. Gorbatko	14,400	1258	220	79 days 15 h 17 min Crew duration: 7 days 20 h 42 min	Grew transferred to Salvut 6 on July 25 to join with Soyuz 35 crew. Returned July 31 with Soyuz 36 spacecraft. Sixth non-Soviet cosmonaut: Pham Tuan (Vietnam).
Sept 18-26	Soyuz 38 Yuri Romanenko	14,400	124	220	7 days 20 h 43 min	Crew transferred to Salvut 6 to joint with Soyuz 35 crew. Returned Sept. 26 with Soyuz 38 spacecraft. Seventh non-Soviet cosmonaut: Mendez (Cuba).
Nov. 27-Dec. 10	Amaldo T. Mendez Soyuz T3 Leonid Kürim Oleg G. Makarov Gennady Strekalov	14,400	202	220	12 days 19 h 8 min	Crew transferred to Saiyuz 6, Thirteenth crewed visit to Saiyuz 6, First three-person mission since ill-fated Soyuz 11 in 1971. Returned Dec. 10. Saiyuz 6 resupplied by Progress 12 (launched Jan. 24).
1981 Mar. 12-May 26	S	14,400	1183	220	.75 days	Ceev transferred to Salout 6 on Mar. 14, Saványári became 100th human to go into space (43 U.S. astronauts, 57 East-bloc coamonauts).
Mar. 22-30	Soyuz 39 Vladimir Dzhanibekov.	14,400	125	220	7 days 20 h 43 min	Crew transferred to Salvut 6 on Mar. 23 to join with Soyuz 74 crew. Returned on Mar. 30 with Soyuz 39. Eighth non-Soviet cosmonaut: Gurragcha (Mongolia).
1	J. Gurnagcha STS-1 John Young Robert Crippen	205,000	36	172	2 days 6 h 20 min 52 s	First crewed orbital test fight of the U.S. space shuttle Columbia. After a two-day delay due to an on- board computer anomaly, mission launched at 7 a.m. EST for a hull successful orbital check of the revolutionary recessle spacerated and the many subsystems. Remain to Earth, learning almospheric rangy at Near CS. hypersonicsupersonic maneuvering light and subsonic unpowered landing at Edwards AFB. California, was celebrated by millions around the world. Time of landing on Apr. 14: 1:20 p.m. e.g.
May 14-22	Soyuz 40 Leonid Popov	14,400	124	220	7 days 20 h 41 min	Grew transferred to Saiyut 6 on May 15 to join with Soyuz 74 crew. Returned May 22 with Soyuz 40. Ninth non-Soyiet cosmonaur Prunariu (Romania).

Mathematical signs and symbols

> g ≤ ld ≥ g = e ≅ id ≈ a ~ s ≡ c ≠ n	ess than greater than ess than or equal to greater than or equal to equals dentical with approximately equals cimilar to congruent not equal to approaches proportionate	# Number % percentage ∆x increment of x dx /dt derivative of x w.r.t. to t ∂x /∂t partial derivative of x w.r.t. t ∫ integral of absolute integral between a & b f(x) function of x e ^x exponential of x
p () pa {} bu [] bu □ D ∠ au Δ (c ∇ do ¬ do ¬ do	infinity parallel to arenthese rackets races i = 3.142 ngle delta) difference el or nabla, vector ifferential operator aplacian operator actorial 5 = 5x4x3x2x1	belongs to not belongs to average of implies that square root of for all therefore logarithm of u to the base 10 In u natural logarithm of u (to the base e)

Greek Alphabets

N v nu
Ξξxi
O o omicro
П п рі
P ρ rho
Σ σ sigma
T τ tau
Υ υ upsilon
Φφφphi
X χ chi
Ψ ψ psi
O ω omega

Trigonometry

Special Definitions:

$$\sin \theta = \text{opposite / hypotenuse} = y/r$$

$$\cos \theta = \text{base / hypotenuse} = x/r$$

$$\tan \theta = \text{opposite / base} = y/x$$
for circular functions:
$$\sin \theta = (e^{i\theta} - e^{-i\theta})/2i \qquad \cos \theta = (e^{i\theta} + e^{-i\theta})/2$$

$$\tan \theta = \sin \theta / \cos \theta$$

$$\sin \theta = \theta - \theta^3/3! + \theta^5/5! - \theta^7/7! + \dots$$

$$\cos \theta = 1 - \theta^2/2! + \theta^4/4! - \theta^6/6! + \dots$$

$$\tan \theta = \theta + \theta^3/3! + (2/15)\theta^6 + \dots$$
Few Identities:
$$\sin^2 \theta + \cos^2 \theta = 1 \qquad \sin 2\alpha = 2 \sin \alpha \cos \alpha$$

$$\tan \theta = \sin \theta / \cos \theta \qquad 2 \sin^2 \theta/2 = 1 - \cos \theta$$
Relations:
$$\sin^2 (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

$$\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$\cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$\sin (-\theta) = -\sin \theta \qquad \cos (-\theta) = \cos \theta \qquad \tan (-\theta) = -\tan \theta$$

The Four Quadrants:

The two axes of the rectangular coordinate system divide the plane into four parts.

	Y	
	Second Quadrant	First Quadrant
	Third	X Fourth
	Quadrant	Quadrant
Signs of Trigonome	etric Functions:	
	$ \begin{aligned} &\text{II}\\ &\text{Sin }\theta + \text{ve}\\ &\text{Cosec }\theta + \text{ve} \end{aligned} $	I All Positive
	III Tan θ + ve Cot θ +ve	$ \begin{array}{c} \text{IV} \\ \text{Cos } \theta + \text{ve} \\ \text{Sec } \theta + \text{ve} \end{array} $

Functions of 0°, 30°, 45°, 60°, 90°, 180°

$$P(1,0)$$
 $P(1,1)$
 $P(1,$

$$\sin 0^{\circ} = 0/1 = 0$$
 $\cos 0^{\circ} = 1/1 = 1$ $\tan 0^{\circ} = 0/1 = 0$
 $\sin 30^{\circ} = 1/2$ $\cos 30^{\circ} = \sqrt{3}/2$ $\tan 30^{\circ} = 1/\sqrt{3}$
 $\sin 45^{\circ} = 1/\sqrt{2}$ $\cos 45^{\circ} = 1/\sqrt{2}$ $\tan 45^{\circ} = 1/1 = 1$
 $\sin 60^{\circ} = \sqrt{3}/2$ $\cos 60^{\circ} = 1/2$ $\tan 60^{\circ} = \sqrt{3}/1 = \sqrt{3}$
 $\sin 90^{\circ} = 1/1 = 1$ $\cos 90^{\circ} = 0/1 = 0$ $\tan 90^{\circ}$ is not defined
 $\sin 180^{\circ} = 0/-1 = 1$ $\cos 180^{\circ} = -1/1 = -1$ $\tan 180^{\circ} = 0/1 = 0$

Exponential Function

Consider a function f(x) given by the infinite series $1 + x + x^2/2! + x^3/3! + x^4/4! + x^5/5! +$ (1) for x = 1, the value of the above function is 1 + 1 + 1/2! + 1/3! + 1/4! + 1/5! + ...(2) we use the symbol e to denote the sum of the series (2), $e = 1 + 1 + 1/2 + 1/3.2 + 1/4.3.2 + \dots$ $= 1 + 1 + 0.5 + 0.16667 + 0.04167 + 0.00833 + \dots$ = 2.718 approximately we can have $e^{x} = 1 + x + x^{2}/2! + x^{3}/3! + x^{4}/4! + \dots$ (3)

Just as the number Π is expected to make its appearance whenever we make calculations involving circles or allied curves, in the same manner we expect the exponential function to be presented in the study of those natural phenomena where the rate of change of a quantity is proportional to the quantity itself. Examples of the latter are the bactorial growth, decomposition of a radioactive substance, and motion when resistance is proportional to the velocity.

Logarithm:

The logarithm of a number x to the base a is the exponent y that the base must raised to produce the number.

For example,

$$\log_{10}(10^4) = 4$$

Equations,

$$\log_{eX} = y$$
 $y = e^{y}$

Illustration:

Consider

$$(1, 10, 100, 1000, 10,000)$$

or $1, 10^1, 10^2, 10^3, 10^4$
the above elements are

the logs of the above elements are

0, 1, 2, 3, 4

Example:

Our ear works on logarithmic scale. For example, a sound of 10 times larger intensity will be just twice of first intensity, similarly, 1000 time larger will be just three times of its first intensity.

Calculus

Calculus: Branch of mathematics that permits the manipulation of continuously varying quantities, applicable to practical problems.

Integral Calculus: The branch of calculus making use of the processes of summation of infinitesimally small elements.

Differential Calculus: A branch of pure mathematics that deals with continuously varying quantities.

Differential Calculus is based on the purely arithmetical ideas of number and the theory of limits. Its main object is to estimate the rate of growth of changing quantities. If y = f(x) be a function of x, then

$$Lt_{\delta x} \to 0 \frac{f(x + \delta x) - f(x)}{\delta x}$$

is called the differential coefficient of f(x) and is denoted by dy/dx. It is also called the derivative of the function y = f(x). Thus the derivative of y = f(x) is given by,

$$dy/dx = d/dx [f(x)] = Lt_{\delta x \to 0} \underline{f(x + \delta x) - f(x)}$$

Employing this process in determining the derivative of a function, means, finding the derivative from definition, or first principles, or ab-initio.

Functions of several Independent Variables: These are common, for instance, the area of a triangle depends upon two variables, viz., the base and the altitude; while the volume of a rectangular box depends upon three

variables, viz., its length, breadth, and depth; and it is plain that each of these variables may vary independently of others.

Partial Differential Coefficients:

The partial derivative of z = f(x,y) with respect to x is the ordinary differential coefficient of f(x,y) when y is regarded as a constant. It is written as: $\partial z/\partial x$ or $\partial f/\partial x$ or f_x

Thus
$$\partial f/\partial x = Lt_{\delta x \to 0} \frac{f(x + \delta x, y) - f(x, y)}{\delta y}$$

Partial derivatives of higher orders:

We can form partial derivatives of $\partial z/\partial x$ and $\partial z/\partial y$.

Thus we

 $\partial /\partial x(\partial z/\partial x), \quad \partial /\partial y(\partial z/\partial x)$

which are called the second order partial derivatives of z and are denoted by $\partial^2 z / \partial x^2$, $\partial^2 z / \partial y \partial x$ or f_x^2 , f_{yx}

Laplace's Equation:

The operator $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} (\equiv \nabla^2)$ plays a fundamental part in the Higher Physical Analysis.

The equation $\nabla^2 V = 0$ is called Laplace's equation; and any homogeneous function of x, y, z which satisfies it, is called a Spherical Harmonic. It is customary to denote $x^2 + y^2 + z^2$ by r^2 .

The differential operator ∇ :

The differential operator ∇ called 'del' was introduced by Sir William Rowan Hamilton

$$\nabla = \underline{i} \partial / \partial x + \underline{i} \partial / \partial y + \underline{k} \partial / \partial z$$

Standard Formulae for Differentiation & Integration

$$\frac{d(c)}{dx} = 0 \qquad \frac{d(x)}{dx} = 1 \qquad \int 1.dx = x \qquad \int (0) \, dx = C$$

$$\frac{d(x^n)}{dx} = n \, x^{n-1} \qquad \int x^n \, dx = x^{n+1}/(n+1)$$

$$\frac{d(a^n)}{dx} = a^n \log_e a \qquad \int a^n \, dx = a^n \log_e a$$

$$\frac{d(e^n)}{dx} = e^n \qquad \int e^n \, dx = e^n \, dx = e^n \, dx = e^n \, dx \qquad \int e^n \, dx = e^n \,$$

COMMON LOGARITHMS

												25						ř.			
м	0	1	2	1 3	4	5	6	7	8	9	и	0	of I	2	3	. 1	1 5 Jun 15		1-1-	1	Co and
- 1			anna.		P.L.C	5	7752	8451	9031	9542	1.50	6990	6998	7007	7016	7024	7033	7042	7050	1059	7067
0 ;		nxxu	3010	4771	0031	1761	2041	2304	2353	27KH	31	7076	7084	7093	7101	7110	7118	7126	7135	:143	7152
1 -	0000	0414	0792	3617	3502	3979	4150	4314	4472	4624	52	7160	7164	7177	7185	7193	7.002	7210	7214	7226 7306	7315
3 -	4771	4914	3424	4185	3315	5441	5563	5682	579H	5911	53	7243	7251	7259	7287	7278	7284	7292	73(X)		1
			6232	6335	6435	6532	6628	6721	6812	6902	54	7324	7332	7340	7 118	7356	7364	1372	7350	7166	7474
. 5	6090	7076	7160	7243	7324	7404	7482	7559	7634	7709	55	7404	7412	7419	7427	7435	7443	7451	7536	7543	7551
6	1782	7853	7924	7993	9062	8129	8195	8251	8325	8348	56	7482	7490				1		7617	7619	7627
7	8451	8513	8573	8633	8692	8751	8308	8865	8921	8976	57	7559	7566	7574	7.582	7589 7664	7597	7804	7680	7694	7701
1 6	9331	9085	9138	9191	9243	9294	9345	9395	9445	8444	58	7634	7642	7649	7657	7738	7745	7752	7760	7767	7774
	9542	9390	9638	9445	9731	9777	9823	8689	9912	9950	59	7782	7789	7796	7803	7810	7818	7825	7632	7939	7846
10 %	(1000)	0043	Octo6	0128	0170	0212	0253	0294	0334	0374	61	7853	7860	7568	7875	7882	7889	7896	7903	7910	7917
11	0414	0433	0492	0531	0569	0607	0645	1038	1072	1106	62	7924	7931	7938	7945	7952	7959	7966	7973	1.640	7987
1 12	0792	082x	0K64	1239	1271	1303	1004	1367	1399	1430	63	7993	8000	8007	8014	8021	8028	m035	HC41	4048	8033
1.13	1139	1173	1206					1673	1703	1732	64	80H2	8069	8075	BON 2	หด้อง	HUHH	8102	8109	8116	8122
14	1461	1492	1523	1553	1594	1903	1644	1959	1987	2014	. 65	8129	8136	8142	N149	X156	8162	8119	8176	8182	BIAN
15	1761	1790 2066	1818	1847	2148	2175	2201	2227	2253	2279	66	8195	8202	8209	8215	8222	8228	8235	8241	K348	8254
1 1			2355	2380	2405	2430	2455	2480	2504	2529	67	1668	8267	8274	8280	H247	8293	8279	N306	F313	8319
17	2304	2330 2577	2555	2625	264h	2672	2695	2718	2742	2785	68	8325	8331	8338	H344	8351	8357	8363	8432	8376	8352 8445
1M	27 Kh	2810	2833	2856	2H7H	2900	2923	2945	2967	2989	69	8354	8395	8401	84/17	8414	8420	8426 8488	N494	85XX	85M
20	3010	3032	3051	H175	36796	3118	3139	3160	3181	3201	70	8451	8457	8463	8470	6476	8482	8549	8555	85b1	8567
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	71	8513	8519	8525 8585	8531 8591	8537 8597	8543	5509	8615	8621	8627
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	72	8573	8639	8645	K651	8657	1 3663	8649	8675	N681	8686
23	3617	3606	3855	3674	3692	3711	3729	3747	3766		1 1 1	1	RODS	8704	×710	8716	8722	8727	8733	H739	8745
24	3802	3420	3838	3556	3874	3892	3909	3927	3945 4116	3962 4133	74	8602	8756	8762	8768	8774	8779	8785	8791	8797	8862
25	3979	3997	4014	4031	4216	4065	4082	4099 4265	4281	1208	76	8808	8N14	NE 20	8825	8831	N637	5412	8818	N×54	8659
26	4150	4166	4183			4393	4409	4455	4440	4456	77	8865	8871	×876	8882	55n7	8893	HOW	8WH .	7 410	8915
27	4314	4330	4346	4302 4518	4378	4548	4564	4579	4594	4609	1 78	8921	8927	8932	8038	8943	8949	8954	4900	HWG5	8971
2H 29	4472	4487	1651	4569	45X3	4698	4713	472N	1742	4757	79	8976	8982	8987	8093	8998	9004	9KXX9	1015	9(120	9025
30	4771	47 NO	4800	4814	4829	4543	4857	4871	ВРИВ	4900	80	9031	9936	9/142	9047	9053	905h	NX3	SON9	1K174	9079
	4914	4928	4942	4955	4969	4983	1997	5011	5024	5038	81	9083	9090	9096	9101	9109	9112	9117	9122	912h	9133 ;
31	5051	5065	5079	5097	5105	5119	5132	5145	5159	5172	h2	9138	9143	9149	9154	9159	9165	9170	9175	9180 5232	9186 .
33	5185	2198	5211	5224	5237	5250	\$263	A276	5249	5302	83	8191	9196	1201	9206	9213					
34 3	5315	532×	5340	5353	5366	5378	5391	5403	5416	5428	84	9213	9248	9253	9258	9263	9269	9325	9279	9.94 F	9280 I
. 35 %	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	85	9294	9299	9304	9360	9315	9370	9375	9350	9385 i	9330 .
36 -	5563	5575	5587	\$599	5611	5623	54:35	5647	565N	5670	.86	9345				9415	9420	9425	A4.10	5435	9440
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786 5899	87	9395	9400	9405	9410	9465	9149	9474	9179		8459
38	579h	5809	5K21	5K32	5543	5H55 5H66	5k66 5977	5877 5988	5898 5999	6010	1 89	9494	9499	9504	9509	9513	W518	9523	9575	9533	¥538
39	5911	5022	5933	5944	5955	6075	6085	6096	6107	6117	90	9542	9547	9552	9557	9542	9566	9571 1	W511.	9551	9.560
40	6021	4031	6642	0053	6064	6180	6191	0201	6212	6222	91	9590	9595	SHAK)	SHKAS (SIKIN	9614	9019	9824	9625	8633
41 1	612h	6134	4149	6100	6176	6284	6294	6304	6314	6325	1 92	9638	9643	9647	96A2	9657	9661	9/106	9671	9675	4.24.1
42 1	6232	6343	6355	6305	0375	6385	6395	8405	6415	6425	93	9685	8689	9694	9499	9703	970K	9713	9717	9772	9727
			6454	0464	6474	6484	6493	6503	6513	6522	94	9731	9736	9741	9745	97.50	9754	975W	9763	With.	9173
44	6532	6542	6551	6561	8571	6550	6590	6599	6609	6518	95	9777	9782	9786	9791	9795	DHIXI	BYU5	9909	9614	9HIN
46 :	562K	0637	6516	6656	6665	6675	6654	6693	6702	6712	96	9823	9827	9832	9836	BH41	9845	91.50	9854. j	gery !	9863
		67.30	6739	6719	0758	6767	6776	6785	6794	6803	97	9668	9872	9877	UNKI	DHHG	9896	9894	8483	tivad	9903
47 .	6721 6412	6621	643K)	6439	6448	6H57	8466	6875	6884	6893	98	9912	9917	9921	9926	9930	9934 9978	9939	9987	8847	9952 9956
69	69/12	8911	6926	6925	6937	6946	89.55	6964	6972	6981	99	9958	1984	0009	9969	OUIT	0022	0026		(A: 15	00.19
50	difry()	695x	7(K)7	7016	7024	7033	7042	7050	7059	7007	100	0000	0004	COOR I	0013	0017	W122 1	0.76			
				1		40.50	1	7	8	9	N	0	1	2	3 ,	4 5	5	6 1	7		9
×	U	1	2	3	4	5 ;	6	,			1 **										

59

NATURAL TRIGONOMETRIC FUNCTIONS

						A	ngle			
Angle		O!	Cosine	Tangent	Deg	ree	Radian	Sine	Cosine	Tangent
)egree	Radian	Sine		The state of the s	1 77		Marie Philip application which to desire a	Market Market Co.		
0.	.000	0.000	1.000	0.000	46		0.803	0.719	0 695	1.036
1°	.017	.017	1.000	.017	47		.820	.731	.682	1.072
00	.035	.035	0.999	.035			.838	.743	.669	1.111
2°		.052	.999	.052	48	.	.835	.755	.656	1.150
3°	.052	.002	.998	.070	49		.855	.755	.643	. 1.192
40	.070	.070		.087	50)°	.873	.766	.043	. 1.102
5°	.087	.087	.996	.001	1				.629	1.235
		101	.994	.105	51	0	.890	.777		1.280
6°	.105	.104		.123	52	0	.908	.788	.616	1.327
-0	.122	.122	.992	.140	53	0	.925	.799	.602	1.027
s°	.140	.139	.990		54	0	.942	.809	.588	1.376
9°	.157	.156	.988	.158	55		.960	.819	.574	1.428
10°	.174	.174	.985	.176	90	1	.000			1 100
10	.1/1	****			56	0	.977	.829	.559	1,483
11°	.192	.191	.982	.194	57	0	.995	.539	.545	1.540
12°	.209	.208	.978	.212			1.012	.848	.530	1.600
	.227	.225	.974	.231	58			.857	.515	1.664
13°		.242	.970	.249	59	,	1.030	.866	.500	1.732
14°	.244	.242	.966	.268	60)°	1.047	.800	.000	
15°	.262	.259	.800	1			. 007	.875	.485	1.804
		070	.961	.287	61		1.065	.883	.470	1.881
16°	.279	.276		.306	62	20	1.082	.883	.154	1.963
170	.297	292	.956	325	63	3° .	1.100	.891		2.050
18°	.314	.309	.951		64	0	1.117	.899	.438	
100	.332	.326	.946	.344	65		1.134	.906	.423	2.145
	.349	.342	.940	.364	0.	'	11101			2.246
20°	.090	19.14		204	66	30	1.152	.914	.407	
21°	.366	.358	.934	.384	67		1.169	.920	.391	2.356
	.384	.375	.927	.404	68		1.187	.927	375	2.475
22°		.391	.920	.424				.934	.358	2.605
23°	.401		.914	.445	69	3°	1.204		.342	2.747
24°	.419	.407		.466	70)°	1.222	.940	.092	
25°	.436	.423	.906	.400		1	1	.946	.326	2.904
20			.899	.488	71	l°	1.239		.309	3.078
26°	.451	.438		.510	72	2°	1.257	.951	.292	3.271
270	.471	.454	.891	.532	73	30	1.274	.956	.292	3.487
25°	.489	.470	883		74	10	1.292	.961	.276	0.407
2.5	.506	.485	.875	.554	77	.0	1.309	.966	259	3.732
240	.524	.500	.866	.577	11	,			210	4.011
300	.024	1000		1 00:	76	30	1.326	.970	.242	
0.0	.511	,515	.857	.60i	77	70	1.344	.974	.225	4.331
31°		.530	.848	.625	78	00	1.361	.978	.208	4.705
3.70	558	.545	.839	.649	1 78	5		.982	.191	5.145
33°	.576		.829	.674	79		1.379	.985	.174	5.671
34°	.593	.559		.700	. 80)°	1.396	3000		
35°	.611	.574	.819					.988	.156	6.314
****	1		.809	.726	8	l°	1.414	.990	.139	7.115
362	628	.588		.754	8		1.431		,122	8.144
37°	.646	.602	.799	701	8	3°	1.449	.992		9.514
350	.663	616	.788	.781	0.	4°	1.466	.994	.104	11.43
35		.629	.777	.810		5°	1.484	.996	.087	, 11.40
1597	.681	.643	.766	.839	8	O	1.401			14.30
-1()°	.698	(144)	., .,,,		1	6°	1.501	.998	.070	
		656	.755	.869	8	()	1.518	.999	.0.52	19.08
41°	.716	(161)	.743	.900	8	7°	1.010	.999	.035	28.64
120	.733	.669		.933	8	S°	1.536	1.000	.017	57.29
4:3°	.750	.682	.731	.966	8	y°	1.553		.000	7.
110	.768	.695	.719			U°	1.571	1.000	,000	J
11	.785	.707	.707	1.000	17	•				

Resistor and Capacitor Colour Codes

Coloured bands around the body of a resistor designate the nominal value of its resistance in ohms. Three coloured bands grouped toward one end of the resistor, fig.1, are interpreted

Second. Tologo. as a number having two significant figures and a multiplier factor.

The band nearest the end of the resistor represents the first significant figure according according to the colour code in the able. The second band in the second significant figure, and the third band gives the number of zeros to add to determine the actual resistance. For example, a resistor

whose bands are yellow , violet, and orange has a resistance of 47,000 ; green, blue green signifies 5,600,000 , or 5.6 M etc. Resistor values between 1 and 10 are indicated by a gold third band, while a silver third band means the resistance is between 0.1 and 1

A fourth hand of either gold or silver tells the tolerance, or limit of accuracy, of the resistance value. A gold band indicates the the tolerance is ±5 percent, which means that the actual resistance may be any value within 5 percent of the nominal value. Similarly, a silver band signifies a tolerance of ±10 percent. If the fourth band is absent, the tolerance is understood to be ± 20 percent.

digit Table:

Resistor Colour Code

	Colour	Number
	Black	O
	Brown	1
	Red	2
	Orange	3
	Yellow	4
	Green	5.
	Blue	Ó
	Violet	7
	Gray	8
	White	9

Capacitor colour codes are not as universally accepted as is the case for resistors. The codes used differ somewhat among manufacturers and many manufacturers print the numerical value of capacitance on the body of the unit. Nevertheless, the majority of mica and ceramic tubular capacitors used the same colour code as in the Table, to indicate the nominal capacitance value in picofarads, fig.2. For example, red, violet, red signifies 2700 pf or 0.0027 uf; orange, orange, black means 33 pf, etc. Other coloured bands or dots are also used to indicate tolerance, temperature coefficient of Capacitance, and other parameters. These also vary from manufacturer to

Fig. 2:

Colour-code scheme for mica (above) and ceramic (below) capacitors.

Second digit First digit Multiplies White or Black means mica multiples digit Second

List of Abbreviations

DNA deoxyribonucleic acid

T_c Transition temperature

Cusec Cubic feet per second

Bibliography

- The Wordsworth , Encyclopedia (Vol 4), Wordsworth Editions, Helicon Publishing Ltd 1995
- Nazir Ahmad, Ground Water Resources of Pakistan, Shahzad Nazir, 61-B/2, Gulberg 3, Lahore. February 1974.
- 3. Durbin, Frank M. Introduction to Physics, Asian Edition.