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PREFACE

This book of “Waves & Oscillations” contains mathematical
details which should be beneficial to students. I want to offer
some words of advice which is based upon my 26 years of
experience in teaching at college level.

You should read the text carefully. It is not possible for an
ordinary student to absorb the full meaning of scientific
writing after one reading. Several readings of the text with
class lectures are necessary.

The discussion with your class fellows will also increase
your understanding about the subject. The class lecture will
be very much meaningful if you read the corresponding text
in advance.

I have tried to keep such students in mind that has inadequate
mathematical background by writing mathematical details at
some places as a footnote or side-note.

Please give your suggestions and criticisms. 1 will take into
consideration for next edition.

August 20, 2003 Ross Nazir Ullah
F.C.C., Lahore
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HARMONIC OSCILLATIONS

1-1: DEFINITIONS:

Translatory motion: A body moves with translatory motion if each particle of the body
undergoes the same displacement in a straight line in a given time.

Rotatory motion: A body moves with rotatory motion if each particle of the body
moves in a circle about a straight line called the axis of rotation,

Vibratory motion: If the motion is back and forth over the same path about a mean
position, it is called vibratory or oscillatory motion.

Simple Harmonic Motion: 1) The projection of uniform circular motion upon any
diameter of a circle.

2) A particle is said to possess a simple harmonic motion if its
acceleration is always directed towards the centre and its
value is proportional to the displacement of the particle
from its central position.

Periodic motion: A motion which repeats itself in equal intervals of time.
Vibration: One complete round trip of the body.

Time period: It is the time required to complete one vibration.

Frequency: It is the number of vibratiuons executed by a body in one second.
Displacement: Distance from the equilibrium position at certain instant.

Amplitude: The maximum distance travelled by a vibrating particle from its mean position.

Wavelength: The distance between one particle ina wave and the corresponding particle
in the next wave.

Phase: The state or condition as regards its position and direction of motion with respect to
the mean position.

Waveform: The shape of a signal or wave displayed on a cathode-ray tube or other
recording device.

Sinusoidal waveform: A waveform consisting of sine wave.

Hooke’s Law: Within the limits of perfect elasticity strain is directly proportional to
stress.
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1-2: SIMPLE HARMONIC MOTION:

Consider a simple harmonic
oscillator, consisting of a spring
acting on a body that slides on

a frictionless horizontal surface.
From modified form of Hooke’s

Law ,
Restoring force: F = -kx  .....(1.1)
From Newton’s 2" Law
Applied force: F = s 12)
From eqgs (1.1) & (1 .2), we get

ma = -kx

m (d*x/dt?) = -kx [a=d*/dt?

or &/ + (Wm)x = 0 ..(L3)

Relation (1.3) is the equation of motion of
the simple harmonic oscillator.

Put kkm = o ... (1.4)
Then dzx/dt?‘ + 0K =0 . 1.5) .
or X+ cozx = 0 x=
¥+ o'dx =0 A
VAt @)+ Yol ddt(xH) = aF

didt{ %% + ha’x’} = 0
integrating w.r.t. ‘t’,
B+ %ot = B

2 2
% :28-032}(

o= \f"_’M
dx/dt = ng o x%)

dx/( 2B-0"x%) = dt

o §l%
Re

1

3
fdx/m [ dt [Idx/m: sin? x/a

(m) [sin ( ux)N—’]:
sin’ (Lox)/\f“— - sin’ (Qx{,)/\f’)B = ot
put  sin’ o %) 2B = (o]
" sin’ (mx)/\.‘TB- = ot + ¢
or (0x)NIZB = sin(ot + ¢)
= (\IB/w)sin(ot + ¢)
put \2B/o = A,
S0 x = Aysin(ot + ¢1)
x = (AD{-sin(ot + ¢}
pllt -A1 = A & ¢!1 = ¢-U/2
x = Asin—(ot + ¢ - TI/2)

= Asin{n2—(ot + ¢)} [sin(n/2 - 0) =

= Acos(ot + ¢) ...(1.6)
which is the general solution of eq (1.3)
In eq(1.6) A is maximum amplitude
¢ is phase constant
(ot + ¢)_is phase angle
& x is the position of the particle at time ‘t’

cos B




For particular case, when mass attached to a spring, having maximum amplitude, Xy,

cq (1.6) modifies as:
X = Xpcos(ot + ¢) (L7
differentiating w.r.t., ‘t’, we get
dx/dt = v = -0 Xpsin(ot + ¢) (18
..(1.9)

differentiating once again,
Px/df = a = -0 Xmcos(ot + @)

Eqgs (1.7), (1.8) & (1.9) are equations of displacement, velocity and acceleration of a

simple harmonic oscillator.
1-3: ENERGY CONSIDERATION IN SHM

We have, kinetic energy, K

K = %mv
Putting value of “v’ from eq (1.8), we get
K = “mi{woxpsin(et + ¢)} [0 = k/m
or K = “mo’ X, sin® (ot + ¢) [ormm2=k
or K = Ykxg sint(ot + 0) (1.10)
Also we have, mechanical potential energy, U
U = %kx
Putting value of ‘x’ from eq (1.7)
U = %k{xmcos(ot + ¢)}2
U = kxcos’ (@t + ¢) (11D
From eqs (1.10) & (1.11), we have
Kmax = %k xn® (112)
(113)

Unax = %K Xn®

And total mechanical energy, E
E=K+ U= Y%kx, {sin’ (@t + ¢) + cos’ (w1 + ¢)}
[sin?0 + cos™® = 1
(114

or E = Ykxn

Egs (1.12), (1.13) & (1.14) show that total mechanical energy is same at each point.
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1-4: TIME PERIOD & FREQUENCY IN SHM

We have applied force from Newton's 2™ Law

F = ma sea(1e15)
And restoring force from Hooke’s Law
F = -kx e (1.16)
Fromegs ((1.15) & (1.16) , we get
ma = -kx
or mdx/d? + kx = 0
dx /e + (km)x = 0 (117)
put  kim = o  or o = Vk/m cen(1.18)

dx/de + o'x = 0
whose solution we have calculated in Section 1-2, as

X = Acos(ot + ¢) sl Ll )
Now from the definition of angular velocity, ©
o = 0/t
for one complete cycle, time is its time period and angle is 2I1 radians, so
@ = 2n/T
or T = 2n/w o (1.20)
from eqs (1.18) & (1.20), we have
T = 2n/(k/m)
or T = 2n(\m/k) (121)

Which is the time period in case of SHM.

And the frequency will be
v = UT = (12n)(Vk/m) asaa(122)

We will consider applications of SHM in next Sections.

~




1-5: TORSIONAL OSCILLATOR

Definitions:

Torque (t): A turning force or moment.

Torsion: Angular strain produced by applying torque or twisting force.

Torsional wave: A wave motion in which the vibrations in the medium are rotatory
simple harmonic motions around the direction of energy transfer.

Torsion balance: A device for measuring very small forces by the torsion they cause in
a wire or fiber.

Torsional oscillator: An oscillator in which the oscillations are rotatory.
Moment of Inertia: The rotational analogue of mass. The moment of inertia of an object

rotating about an axis s given by ; I = Tmr
Linear and their angular counter parts:

Linear quantity Angular quantity
X =85 — ] s rf
v - o V=10
a — o a=rau
B == T 6=ot
m — 1
Now from Hooke’s Law, we have
F = kx
Its angular counter part would be,
T = 0 (123
We have from Newton’s 2™ Law
F = ma
Its angular counter-part is,
1= la = 1d%/d (124)

from eqs (1.23) & (1.24) , we get

x6 = 1d0/dt

or  d0/d? = (1o

Po/at + WDo = 0
following linear part from egs (1.5) & (1.6) , we have angular counter-part of the solution of
above equation as,

8 = Opcos(ot + @)
We have time period in linear part is,
T = 2a¥(m/k)

And so its angular counter-part will be

T = 2n\{T) (125
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1-6: SIMPLE PENDULUM

Definition: A single isolated particle suspended from a frictionless support by a light,
inextensible string.

N

Consider a simple pendulum
swinging in a vertical
plane (in 2 dimensions). L

In the fig., resolving force m

mg (weight of the particle) /‘

into two components.

one along its radius and e mgcos®
the other along the tangent
of the circular path.

mgsing

Radial force is providing centripetal force necessary to hold the particle, and tangential force
is respansible for its motion along circular path.

Radial force: F = mgcosB
& tangential force: F = mgsin 0
and restoring force responsible for Taylor’s series expansion for,
its backward motion , sin = 0 -6%3! + 0%s! -,
F = -mgsin0 for small 0, sin6 =6
F = -mgb from the fig.
F -mg (x /L) sinB=0=x/L
F = -(mg/L)x .....(1.26)
Ineq(1.26) m, g & L are constant for a particular case, therefore
F « x
or F « -(displacement)

Which is the characteristic of Simple Harmonic Motion.
Therefore, simple pendulum executes SHM.

To calculate time period of simple pendulum,
Comparing egs (1.16) & (1.28), we have
k = mg/L (127
fromeqs (1.21) & (1.27), weget
T = 2n(mL/mg)
T = 22V(L/g) (128)
Which is the time period of simple pendulum.

We see that
T < \TI:

o Vl/g
and does not depend upon mass, m of the particle.
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1-7: PHYSICAL PENDULUM

Definition: Any rigid body mounted so that it can swing in a vertical plane about some
axis passing through it.

Inertia: 1) It is a property by virtue of which it is necessary to exert a force on a body at
rest if it is to be set into motion.
2) The resistance of matter to any acceleration of its state of rest or motion.
3) An inherent property of matter implied by Newton’s first law of motion;

Inertial mass: The mass of an object as measured by the property of inertia;
Mathematically, it is equalto, m = F /a, for constant force F.

Gravitational mass: The mass of the body as measured by the force of attraction between
masses, the value being given by Newton’s law of gravitation,
F = G(mm; /1)

Relativistic mass: The mass of an object as measured by an observer at rest in a frame of
reference in which the object is moving with velocity v; It is given by

_ a—

m = m, (V(1 -v/c?)

We have
F=mg
& T = Fxt = Fdsin® for small 0
or T = -Mgdsinb sinf = 0
T = -Mgdeo (1.29)
We have from Hooke’s Law,
F = kx
Its rotational counter-part (see Sect 1-3), will be
T = «@ (130
Comparing eqgs (1.29) & (1.30), we get
x = Mgd (131)
Taking o o
T = 27 (m/k) [w=0/tort=0/w=2n/Vmk
In rotational terminology, we have
T = 2r(I/x) (132)
Fromegqs (1.31) & (1.32) we have
T = 2x~(I/Mgd) (1.33)
or I = T*Mgd /4n? (134

The physical pendulum includes the simple pendulum as a special case. Locating the pivot
tar from the object, using a weightless chord of length L, we have then

From eq (1.33), I=mr*
T = 2m V(ML /MgL I=ML* &d=L
or T = 2n(L/g) It i TR (1.35)
From eqs (1.33) & (1.35) we have
L/g = I/Mgd
or L = I/Md .(1.36)

This point whose distance from the pivot is ‘L’ given by above equation, is called the center
of oscillation of the physical pendulura.
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1-8: SHM & CIRCULAR MOTION

From the fig. we have

x = Reos(@t+¢ . (1.37)
y = Rsin(ot + ¢) ...(1.38)
y = Rcos{n/2 - (0t + ¢) cos(m/2-0 = sin 0

y = Reos—(wt+ ¢ - I1/2) cos(-6) = cos 0

y = Reos(@t+¢-112)  — . (1.39)

From eqgs (1.37) & (1.38) we have
X'+ y' = R*{cos’ (ot + ¢) + sin’ (ot + )}
oo X*+y =R (1.40)

Eq (1.40) is equation of a circle, as the particle is executing circular motion. Also eqs (1.37)
& (1.39) show that circular metion is combination of two SHM at right angles.

From the fig. we have [v=ro
vy = -Rosin(ot + ¢) e (1.41)

[, = vV = o = ro?
& ax = -@*R{cosmt + ¢) veina(142)

fromeqs (1.38), (1.41) & (1.42) we see that x, v & a are identical in SHM and in the
projection of circular motion.

Also we have from the fig. [ Compare egs. (1.7), (1.8) & (1.9)
vy = -Rocos(ot + ¢) )
ay = -0’ Rsin(wt + ¢) (144
fromegs (1.41) & (1.43) we have
Vi + vt = (0R)? .(1.45)
from eqgs (1.42) & (1.44) we have
al + ayz = (@*RY n(1.46)

The results of above equations show that SHM can be described as the projection of uniform
circular motion along a diameter of the circle.
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1-9: COMBINATIONS OF HARMONIC MOTIONS

Consider two SHMs having different amplitudes and phase constants.

X = xXpcos{ot + dy) G147

Yy = ymcos(ot + ¢y c(1.48)
If phase constants are same, i.c., §x = ¢y

X = Xpcos(ot + ) .....(1.49)

y = ymcos{®t + 0 c(1.50)
dividing eq (1.50) with (1.49)

Y’IX = ym/xm

or ¥y = (¥m/Xm) X (L5

Eq (1.51) is equation of straight line having slope (ym /%) [see Appendix-C |
If (Y /X)) = 2 OF ¥m = 2 Xm , then we get the following line:

Y o

(&)

If phase constants are different but amplitudes are same,
ie. (Ym/Xm) =1 O ¥m = Xm & ¢ = ¢, + 71/2
then from egs (1.47) & (1.48) we have

X = Xpcos(wt + ¢y + m/2) [cos(® + m/2) = -sin B
or X = Xp{-sin(ot+ o)} ....{1.52)
& v = Xmcos(ot + ¢y) cn(1.33)
squaring (1.52) & (1.53) then adding, we get
Ay =K (1.54)

which is equation of a circle. [see Appendix-C]

Now if phase constants & amplitudes (both) are different
ie.

Ym = 2Xm & ¢x = ¢y +n/2
then from eqs (1.47) & (1.48) we have
X = Xmcos(ot + ¢y + 7/2)
or X = Xp{-sin(ot+ ¢}
& y = 2Xmcos(ot + ¢y)
squaring will give
X = xpsinf (ot + ) (1.59)
¥ 4xy cos” (@t + dy) _ (1.56)
fromegs (1.55) & (1.56) we get

]

Y

Xl ¢ Y Axt = 1 o (1.57)
which is equation of an ellipse [see Appendix-C]
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1-10: LISSAJOUS’ PATTERNS

D

efinition: The curves made by the paths traced out by a particle which is oscillating
simultaneously in two mutually perpendicular directions.

In these patterns, the amplitude, frequency and phase constant can be different.

E

1.

[3e]

xample:
In the following figure a pendulum bob is supported by three cords. When it vibrate in
X-direction (a), its length is L;. And when it vibrates in Y-direction (b), the length of
the pendulum is L. If displaced in both x- and y-directions, the bob executes vibrations
of both frequencies.
A
d =
Ly
1
o b
""""""""" VS
Double pendulun For producing Lissa jous’ figures
In Cathode-ray oscilloscope (CRO), if sinusoidal alternating voltages are applied

simultaneously to the horizontal and vertical deflecting plates, the spot on the screen
produced by the impact of a rapidly moving stream of electrons will also move in a
Lissajous figure.

Qualitative Analysis:

The equations for x- and y-coordinates for the oscillating system are
x = Rycos (ot + 1) .....(1.58)
y = Rysin{oy,t+ ¢2) ... (1.59)

where Ry & R, are respective amplitudes, oy & w, are corresponding angular

frequencies, and ¢, & ¢ are phase constants.

)
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Some Lissajous figures are shown in the fig. for various frequency ratios and initial phase
differences ( &2 - ¢1). The amplitudes Ry and Ry are equal in each case. If the frequencies
are reducible to common measure, the particle retraces a closed path over and over. If they
are not, the path does not close on itself, and the pattern may be extremely complicated. If the
frequencies are very nearly equal, the path changes slowly from a straight line at 45°, as in
fig.(a), to an ellipse as in (b), then to a circle as in (¢), then to an ellipse as in (d), with its
major axis at right angles to that in (b), then to a straight line as in (e), and so on.

(a) c (d) ©

O
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1-11: ANGULAR HARMONIC MOTION
Mathematical analog of linear harmonic motion is angular harmonic motion.

Let a body be pivoted about a fixed axis and acted on by a restoring torque ‘M’ proportional
to the angular displacement ‘¢° from some reference position, then

M = «xb oe(1.60) linear analog:
where x is called torque constant F = -kx
Also we have
M =1« (161 [T = la

From egs. (1.60) & (1.61), we get
la = ko
[d% /de? + k

=0
or  d*o/dt + (Do =

0 . (1.62)

eq. (1.62) has same form as eq. (1.3).

By analogy, the equation of motion in angular terminology is
[x = xpsin(ot + ¢)

b = Odmsin(owt + 0,) sl B3]
where @ = i/, and ¢y, is the angular amplitude.

Example:

The balance wheel of a watch. The watch keeps time even though the amplitude decreases as
the main spring unwinds.
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1-12: DAMPED HARMONIC MOTION

We have

restoring force : F = -kx ...(1.64)
Assume that the object of mass ‘m’ experiences a damping force that increases linearly with
velocity ‘v’

F = -bv ....(1.65)
[ negative sign shows that damping force is opposite to the direction of velocity]
from Newton’s 2™ Law

zfF = ma (1.66)
from egs. (1.64) , (1.65) & (1.66), we get
kx -bv = ma
or -kx -bdxdt = mdXx/d?
or  mdx/dt® + bdx/dt + kx = 0
or d*x /df + (b/m)(dx /dt) + (Km)x = 0
or (D + bimD + km)x = 0 (1.67)

[ddt = D, d¥df" = D*]
from eq. (1.67), the auxiliary equation is
D’ + (bm)D + Km = 0

[ts solution is

D = -b/m % V(b /md)- 4(1)k/m) X = -b + Vb* - dac
21) 2a

D = -b/m = Y4(k/m - (b/2m)*
2

put Yik/m - b2m)Y = o
so D = -b2m +12¢'
2

or D = -b2m *+1 o

[As the solutionof D = a £ 1b is x = e"{A cosbt-+ Bsin bt} ]

x = e™™{Acosw't + Bsino t}
put A = xpcosd & B = xpsing
then
x = e Mix cosdcos o't + Xy sind sin o t}
X = Xme™™{cos @ tcosd + sin o' tsin p}
[since cos(a + B) = cosacosP - sinasinf, therefore,]
X = %me™Mcos (@'t + ¢), where o = Vk/m - (b/2m)*....(1.68)

and amplitude = x, &™™ ...(1.69)
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Two features to note from eqs. (1.68) & (1.69),
i) with friction ‘b’ , frequency ‘f” is less (or time period ‘T is longer) , so

friction slows down the motion
i) curve between displacement “x” and ‘t” decreases exponentially to zero.

The equations of damped harmonic motion:

. Fot um-
1) Under damped (b < 2vkm) X = Xpeos(ot + ),
x = Ae¥cos(@'t+ )  ...(1.70) o = Vk/m

where o = b/2Zm & A = xp

2) Critically damped (b = 2 \f—lzlz}

If b= 0 ,then fromeq.(1.68), o =0

So x = (B + Byt)e?', p=+vkm .. (17D
And displacement approaches to zero exponentially with no oscillations. And mean life time
‘1" has smallest value.

3) Over damped (b> 27km )
X = C1E§n‘f1l + Cz 6_1"2[ (172)

Groph of simple
and damped
harmonic motion

'+ Over domped

"L _Critically

\ Under damged T "

In the fig. the full curve shows the motion when the damping factor is zero. For over
damping, the period is greater than in the absence of damping and the amplitude of
successive oscillations becomes smaller and smaller. For over damping, the body returns
even more slowly to its equilibrium position. For critical damping, the motion ceases to be
oscillatory, and the body returns to its equilibrium position without over-shooting, which is
the goal of mechanical engineers in designing a system in which the oscillations disappear in
the shortest possible time.

Mean life time (1) :
The time interval during which the
amplitude drops to 1/e of its initial value. =
M = el when t = 2m/b e 7
for b =10, v
X,y will be constant and life time
would be infinite.

~J
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1-13: FORCED OSCILLATIONS & RESONANCE

Assume that a system is acted on by a driving force which varies sinusoidally with time
according to the relation

F = Fpcose”t < (1.73)
Also we have the restoring force
F = kx con(174)
& damping force
F = -bv (1.75)
From Newton’s 2™ Law of motion
ZF = ma
or Fpcoso”t-kx-bv = ma . (1.76)
or  mdx/d? + bdx/dt + kx = Fpcos” (LT
the solution of eq. (1.77) is
x = (Fm/G)sin (0"t - ¢) . (1.78)
where G = \fn?(m”z - oY) - bl < (179)
& & = cos'ba" /G ....(1.80)

by calculating dx /dt & d®x /df* ineq. (1.78), it can be verified that this equation is a
solution of the differential eq. (1.77).

from eq. (1.79), ifb = 0
G = m” - b
This means that ‘G’ is large for o" different from .
And  from eq. (1.78),
= amplitude F,, /G is small
As driving frequency ®” — natural frequency ©
G—0
& Fn/G - »
In actual system, some damping is always present and amplitude F,, /G does not go to
infinity.

////
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The graph on the last page in the fig. is for the idealized o

case of a frictionless spring-mass system with an infinite o = k/m

proportional limit of elasticity. The amplitude equals k = mo’
Fu/k  when o' = o

When damping is present, provided it is less than critical, the amplitude passes through a
maximum as frequeney is varied. This phenomenon is known as resonance. It is shown by
next three curves in fig. The maximum amplitude does not occur at frequency

o" = o[seeeq.(1.79) ]

The value of " at which resonance occurs is called resonant angular frequency.

[f'a system is over-damped, the graph of amplitude verses o’ /& does not pass through a
maximum and the amplitude decreases steadily with increasing frequency. This is shown by
the lowest curve in fig.

Hlustrations:

The forced oscillations have the frequency of the external force and not the natural frequency
of the body. The response of the body depends on the relation between the forcing and the
natural frequencies. A succession of small impulses applied at the proper frequency can
produce an oscillation of large amplitude.

All mechanical structures—such as buildings, bridges and air planes—have one or more
natural frequencies. It can be disastrous to subject to the structure to an external driving force
at one of those frequencies.

1. A child using a swing learns to pump at proper time intervals to make the swing move
with a large amplitude.

(58]

The image of a seprano shattering a cup.

The wind blowing through Tacoma Narrows (Washington, U.S.A.) shook the bridge at a
frequency that matched one of its natural frequencies.

(9%}

1-14 TWO BODY OSCILLATIONS

Consider separate motions
of the two particles, shown
in the fig. Their relative
distances from origin O
are x| and x,

The relative separation is
(X1 - Xa)

unstretched length is L.

so, change in length is

(xi - x2) - L
Force exerted on each particle is F:
F = kx
or ma = kx

or md*x/dt* = kx

)4




for particle having mass m;, we have

m &*x; /e = -kx ~..(1.81)
for particle having mass m;, we have
me &’ xo/d? = +kx (1.82)
multiplying eq. (1.81) by my & eq. (1.82) by m; , we get
mme & x /d = -mpkx (1.83)
myms &% xo / d = +my kx (1.84)
subtracting eq. (1.83) from eq. (1.84), we get
mymgdd?/de (%) - %)} = -kx (my + mg)
mims /(my + me) {d x /A (x; - %)} = -kx . (1.85)
We define, reduced mass. m, as
m = mmy/(m; +m;) .....(1.86)
& relative displacement, x, as
X = X1+ Xa (187)
from egs. (1.85), (1.86) & (1.87), we get
md x/d’ = kx
or  d*x/dtt + (Wm)x = 0 (1.88)

which is same as eq. (1.3).
therefore system of fig. (a) can be replaced by a single particle as shown in fig. (b)

Characteristics
I. The reduced mass , m, is always smaller than either mass.
e.g. m = (2x2)/2+2) = 44 =1

2. If one of the masses is very much smaller than the other, the m is roughly equal to
smaller mass.

e.g. m = (IxI100)/A1+100) ~ 1
If the masses are equal, then m is half as large as either mass.

e.g. m = (10x10)/10+10) = 100/20 = 5

(95}
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WAVE MOTION

2-1: DEFINITIONS

Wave motion: The mechanism by which energy is transferred form one particle to another
particle.

Wave: A disturbance in the medium.

Medium: Any material---solid, liquid or gas in which waves travel.

Wave pulse: Single unrepeated disturbance.

Mechanieal waves: The wave which require a medium for their movement.

Electromagnetic waves: Transverse waves in space having an electric component and a
magnetic component.

Matter waves: These waves carry energy and pilot the particle and move along with it.

Travelling waves: Waves produced by a driving force, and they travel away from the
source which produces them.

Stationary waves (or Standing waves): 1) The resultant of two wave trains of the same
wavelength, frequency and amplitude travelling
in opposite directions through the same
medium.

2)Waves apparently standing still resulting from
two similar wave trains travelling in opposite
directions.

Transverse wave: A wave in which the particle of the medium vibrate at right angles to the
direction of travel of the wave.

Longitudinal wave (or Compressional wave): A wave in which the particles of the
medium vibrate to and fro parallel to the direction of travel of the wave.

Light: The aspect of radiant energy of which an observer is visually aware.

Ray: A single line of light coming from a luminous point.

Luminous: Objects that give off light of their own.

Beam: Several parallel rays of light considered collectively.

Wave front: Locus of all points having the same phase of vibration.

Spherieal ( circular) wave front : In homogeneous medium, from a point source ,

concentric spheres (circles) of wave fronts with center at

the source.

Plane wave front: A small portion of a spherical wave front which very nearly plane.
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2-2 : TRAVELLING WAVES

Travelling waves produced by a driving force, and they travel away ffom the source. They
have the property of transporting energy and momentum from one point to another. If a
generator oscillates with simple harmonic motion and is connected to a string will produce
travelling transverse waves.

Consider a single pulse of harmonic waves travelling along the string.

&
) P
Fig 2-1: A 1o,
x®
/
¢ i &
\'~// \F OO
20 - | <. . .
e o N
X Xz x-vt
The waveform f(x)in fig2-1 dependsonxandt,ie.,
yx0) =1 2.1 [y=1fx)

y(x,t) = f(ix) = flx—vit) L (2.2)
To keep same shape of wave form, for the motion of any particular phase of the wave,
(x —vt) = constant
Differentiating w.r.t. t, we have
dx/dt - v =10
or dx/dt = v

where v is called phase velocity

y = sind
For Sinusoidal waves, take a transverse wave y() = Asin@
along astring att =0, we have y(t) = Asinot
y(x,0) = yn sinkx L (23) y(x) =Asinox

y(x) =y sinox
y(x,0) = y sinkx
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Definition: Wave Number or Circular wave number , k

The reciprocal of the wavelength of a wave times 2 T, mathematically
k =2n/h = 2nv
from eq. (2.3) , we have

v (%,0) = Vi sin 27/A(x)

from egs. (2.1) and (2.2) , we have

¥(x,t) = ym  sin2n/h(x — vt) k =2n/%
= ym sin 2u/A(x) - 2m vt/A) S =wt
= ymsin(kx — 2nt/T) A=vT or UT = v/A
o = 2nv = 20/T
or y(xt) = ym sin(kx - oty ... (2.4)
Also y(x.t) = yp sin(kx + wt) ... (2.5)

Eq. (2.4) is the equation of sine wave travelling in positive x-direction, and
Eq. (2.5) is the equation of sine wave travelling in negative x-direction.
In eq (2.4) adding a phase constant ¢, we have

y (1) = ymosin(kx—ot— ¢) <.(2.0)

where ¢ is called phase constant and

(kx — ot — ¢) is called phase angle or phase of the wave

re-arranging eq (2.6), we get
Y (%1 = ymsin {(kx - ki/k) - ot}

or y(Xt) = ym sin {k(x-¢/k) - ot } (2.7
&

V(%1 = ypsin {kx - (ot - op/o)}
or y(x,t) = yn sin{kx — ot + ¢/w)} .....(2.8)

¢qs (2.7) & (2.8) show that the phase constant does not affect the shape of the wave, it only
moves the wave forward or backward in space or time
From eq (2.6) , we have
yiot) = -ym sin(ot+¢ - kx) cn(2.9)
put ¢—kx = ¢'inthe above eq

y(x.t) = -ym sinfot+ ¢') .. (2.10)

eq (2.10) shows that any particular element of the string goes Simple Harmonic Motion for
travelling waves.
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2-3: DEFINITIONS

Principle of refraction: When a ray of light enters from rarer to denser medium it bends
towards the normal and if the ray of light enters from denser to rarer medium, it bends away
from the normal.

G{Em&u,

dernyaTing Adccard, &

figz 2-4

Dispersion: 1) An effect in which radiation’s having different wavelengths travel a
different speeds in the medium.
2) The separation of polychromatic light into its component wavelengths.

Dissipation: The removal of energy from a system to overcome some mechanical or
electrical force.

Group Speed: It is the velocity with which the group of waves travel. If a wave motion has
a phase velocity that depends on wavelength, the disturbance of a progressive

wave travels with a different velocity. This is called group velocity.

Dispersive medium: A medium in which the phenomenon of dispersion occurs.

1]

Phase speed: The speed with which the phase in a travelling wave is v = Av ,v=1/T
propagated. It is equal to A/T, where T is the period. |v = M/T

In non-dispersive medium group speed is equal to phase speed.
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2-4: WAVE SPEED

Considering sinusoidal waves , we know from our previous knowledge
Wave speed = phase speed

= group speed in non-dispersive medium

for mechanical waves in non-dispersive medium
v #E AV
but v depends on properties of the medium.

Consider transverse waves in a stretched string. Calculating speed of waves from
dimensional analvsis and mechanical analysis.

1) Dimensional Analysis:

Speed of waves depends on mass of the string
& force between neighboring elements

mass corresponds linear mass density , p
& force corresponds tension, F

v « F°
oC ].Lh
or v o« Fopd vl @i )

where a & b are to be determined.
Putting relation (2.11) in terms of dimensions

v = [F9[r°] v = em/sec=L/T=LT"
LT' = MLT? )P ML & F =ma=kg-m/sec’ = MLT">
LT-I = M +b 12~ b T-Za
Now exponent of M: a+b = 0 = mass/vol = mass/linear length

exponentof L: a-b =1 =ML
exponent of T : -2a = -1

= a=%

= b=%-1=-%

« Fi1?
oC
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i) Mechanical Analysis: Pre-requisite:
Relativistic frame
To derive an expression for the speed of reference

of a pulse in a stretched string

jc-ié‘. 2-5

Horizontal component of force on the string
F'= +FcosO = -FcosO
& vertical component

F, = 2Fsin O for small 6 density = mass/volume
=2F0 sinf =96 D = m/V
FL = F260 sind = 5 {2 linear mass density
O
R po=38mil
F - F8IR ot 6 = 8lI/2R dm = pdl
26 SR
Equating the net vertical force
To the needed centripetal force F. = mv¥r = 8mv¥/R
but dm = udl
F &R = undlv/R o Fe =udlv*R
Fo=npn V2
v = VFip e (2.13)
but from eq. (2.12) AV
v = Cm
= & =2 |
W s
For smal 5
A8 _ &V
3 "1::
vat | av
4 v
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2-5: PARTICLE SPEED

Calculating transverse velocity of a particle of the medium, in which tranverse
sinusoidal travelling wave is travelling. Notice that wave speed or group speed is speed of
waves not of the medium.

Consider single particle of the string, which is on a certain position on X-axis, so we need
partial derivative of y w.rt. t at constant x (see Appendix-D ), we have

y(x,t) = ypsin (kx - ot-¢) X=Xpcos(owt+ ¢)
y = ymsin(kx - ot - ¢ )
or 8y/ot = - ym @ cos (kx-wt-¢)
& Fyiot = - ypoisinfkx - ot - ¢) didx sinx = cos x
d/dx cosx = -sinx
or Fylof=a= -0’y
= a«-y
which is the characteristic of Simple Harmonic Motion, therefore, each particle of
the string undergoes tranverse simple harmonic motion as the sinusoidal wave passes.

~




2-6 : WAVE EQUATION
We have

F=-kx
kx

&F =ma

Oor ma

or d*x/df® = -(k/m)x

whose solution is eq. (1.7).
Now finding solution for eq. (2.2)
From the figure we have
Net force in the Y-direction

Fy = Fsind,; - F sinb,
= FtanO, - F tan0,
= F( tanf; - tanB,)

Fy= F & tan0 e (2.15)

From Newton’s 2™ Law
F=ma
In this particular case
Fy=06ma,
Or Fy = 1 8x ay .....(2.16)
From eqs (2.15) & (2.16), we get

F &tand = pu 8x ay

&(tanf)/ox = WF (ay)
8(0y/ax) = u ay
ox I

8/8x(0y/ex) = WF (ay)
Now
in the limiting case

Limgy_o &/8x(8y/8x) = 0/ox (Bv/éx) = &y/ex’

From eq (2.17) & (2.18)
Fylox® = wF(ay)
Fviox® = WF@yler)

from eqs (2.13) & (2.19), we get
azy = 1 @y

] 2 2
0x vo ot
Eq. (2.20) is called Wave Equation.

e (2819)
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| %3 :
r—-——_—_‘

(sinB = 6 - 0%/31 +0%/5! -

tan 0 = 0 +0%3 +20%15+

for small 0

L sin @ =tan 6

[ density = mass/Volume
D = mV

linear mass density

1 = mass/unit length
L= 8m/8x

dm = pdx

from eq (2.13)
v =1F/p
v: =F/uor WF = 157

(2.18)

a=dx/dt’ = Pyl

<(2.220)
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2-7: DERIVATION OF WAVE SPEED (Alternate method)

We have Chain Rule:
for travelling waves We have
wixip) = fx vty 00000 s (2.21) y=fu) & u = yx)
Let if
7 = XEVt (2.22) dy/du & du/dx exist
y=1(z) «i(2:23) then

so dy/ox = dildz(62/0x)
from eq (2.22), we have
0z/ex = 1
aylox = dfldz
& Fyloxt = didz(dfidzn)ez/ex = &
also 8y/ét = dffdz(8z/at)
but from eq (2.22)
ozt = +v
o dylet = £vdffdz
& &y/e = didz(x v dfidz)dz/ot = v* A7
from egs (2.24) & (2.25), we have
Fylox = IV (@ylat)
from egs (2.19) & (2.26), we get
WE = 147
Hence v = V@_}l

2-8: POWER & INTENSITY

Power: The time rate of doing work.
P = AW/At

dy/dx = dy/duedu/dx

we know that
d = derivative

Len(224) 8 = partial derivative
so d =28
modifying the above relation
| dy/dx = dy/duedu/dx
-i2.25)
pian(2:26)
een(227)

Intensity: The average power per unit area transmitted across an area A normal to the

direction in which the wave is travelling.
I = P/A

\‘/

Y><




Calculating the rate at which the string transports energy, which is power.
From Fig 2-8, we have for travelling waves
[ %X = Xm cos(mt + ¢)
Y(x,1) = ymsin(kx - ot - ¢)
For zero phase constant (¢ = 0)

dy/ot = u = -y cos(kx - ©t) .(2.28)
& Bylox = K ym cos(kx - ot) (Ve % ditsdo] | (220) [ P = AW/At=F.Ad/AL
F, is vertical component P=F.u=Fucos
F, = Fsind = Ftan® = Foylox ... (2.30) | for 6=0
We have for vertical case P=Fu=uF
P=ukFy (231
From egs (2.28) to (2.31), we get v="/por v’ =T/
P = (By/et)(F dy/éx) : or F=vu
= F{-aymcos(kx - ot)} {kymcos(kx - wt)} we have
= F yu’ ko cos’(kx - of) k = 2TT/% or A = 2IT/k
since F=vu & k=okv & v =hv =20Iv/k = o/k
P =y pvoeosi(kx - ot) n(2.32) so k= /v
now average power, P we have
P = Yy ne’ v (2.33) sin®0 + cos®™@ = 1
or ﬂ.‘l\//:i\tocym2 or ¥+ ¥ =1
o u)2

and not depends upon xort
Calculating Intensity, I

I =P/A =y po’2A (234

2-9: DEFINITIONS

Principle of Superposition of Waves: When two waves act upon a body simultancously
they pass each other without disturbing each other, and act
upon the particles of the medium quite independent of each
other, and their resultant displacement is the resultant of all
individual waves.

Complex Waves: When a large number of harmonic waves superpose, the resulting

wave is called complex wave.

Fourier Series: The following Series show that any periodic motion of a particle can be

represented as a combination of simple harmonic motions.

v(x) = Ay + Assinkx + Apsin2kx + Agsin3kx + . . .. + Bjcoskx + Bacos2kx + Bscos3kx
... (2.35)
where y(x) is waveform at a particular time having wavelength A
& k is wave number equal to 2m/A,
coefficients A and B have definite values for particular periodic motion

Interference: The phenomenon in which the two waves support each other at some
- points and cancel at others.

31
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Constructive Interference: The interference of two waves, so that they reinforce one
another.
Destructive Interference: The interference of two waves , so that they cancel one
another.
Standing Waves (Stationary Waves): 1) The resultant of two wave trains of the same
wavelength, frequency, and amplitude travelling in opposite
directions through the same medium.
2) Waves apparently standing still resulting from two similar
wave trains travelling in opposite directions,
Node: A point of no disturbance of a standing wave.
Antinode: A point which oscillate with the maximum amplitude in standing waves.
Diffraction: The bending of waves around the edge of an opening or obstacle.
Reflection: The turning back of a wave from the boundary of a medium.
Refraction: The bending of a wave disturbance as it passes obliquely from one medium
into another of different density.
Transmission: The passage of the wave from one medium into the other.
Principle of reflection for tranverse waves: On reflection from a fixed end, a transverse
wave undergoes a phase change of 180" (or crest changes into trough)
and at a free end, a transverse wave is reflected without change of phase.
Resonance: The vibratory motion produced in a body by the influence of another body
when their time periods are exactly equal.
Qualitative analysis of standing waves:
Consider two waves y(x,t) and yz(x,t) with zero phase constant travelling in
opposite directions (see eqs 2.4 & 2.5):
yi(x.t) = ym sin(kx - ot) .(2.36)
v2(%,t) = ypsinkx+to0ty (2.36)
from superposition principle, the resultant of the above equations is;
y(x0 = ikt + ya(x.t)
= ymsin(kx - ot) + yu sinkx + ot) (237
= yp {sin(kx - ot) + sin(kx + ot)} [sinA + sinB =
= ym [2sin ¥z {2kx} cos ¥ {-2mt}] [2sin % (A +B)cos Y2 (A -B)
ory(x,t)y = 2ymsinkxcosot (2.38)
where amplitude of the wave is 2y, sin kx
& maximum amplitude is 2 yp,
(for max sin kx = 1=kx = n/2,31/2,5%/2, . . .)
sincek =2n/k, sox=[kx] A /2n = A/4,30/4, . ......
& minimum value is for sinkx =0 1i.e. kx ==, 2n, 3w, . ..
it corresponds x =A/2, A, 30/2, . ..
since k = 27/A, so positions of antinodal points corresponding to max amplitude
and nodal points corresponding to min amplitudes are:

for antinodes: x = /4, 30/4, Sh/4, TA4, . ..
fornodes: x = A2, A, 3A/2, 2%, 5072, ...




33
SOUND & LIGHT

3-1: BEATS

Definition: 1) The condition whereby two sound waves form an outburst of sound
followed by an interval of comparative silence.
2) The periodic alternations of sound between maximum and minimum
loudness.

We have for travelling waves
y(x.t) = ymsin(kx - ot - §) [x = xm cos(ot+¢)

For fixed position with zero phase constant,
y(t) = Ymsin (-0t) = -ym sin ot
selecting positive direction, we have

y(t) = ¥msin ot idll3:1)
Considering sound waves of variation in pressure with time,
p(t) = pm sin ot ..(32)
or Ap; (1) = Appmsinogt (3.3)
& Apa() = Apmsinept L (3.4)
Applying Principle of Superposition of Waves to eqs (3.3) & (3.4), we get
Ap(t) = Api(t) + Apa(t) [ sinA + sinB =
= Apm{sin ot + sin ot} [ 2sin(A+B)/2 cos(A—-B)/2
= Apn{2 sin (01 + @2)t/2 cos (o - w)t/2} I 21
put () +@)2 =@ & (0-0)/2 = Oamp -
Ap(t) = 2ApmCOS @ampt SIN B . )
From relations (3.6), we have
2('0ZIITIP = 0 -W .....(3.8)
which is beat frequency.
o Opear = W) -2 (39) [ﬂ)=2nv
Of Vhear — Y1-V2 e (3.10)

i.c., the number of beats per second is the difference of the frequencies of the
component waves.

W
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3-2: DOPPLER EFFECT

Statement: The change in the pitch of sound caused by the relative motion of either the
source of sound or the listener is called the Doppler effect.

[Pitch: Sensation depending upon frequency by which shrill sound is distinguished from
a grave one.]

Explanation: It is observed that the pitch of sound of a whistling train approaching a
listener increases and when the train is moving away the pitch decreases.

Qualitative Analysis:

Case 1: Observer is moving towards a stationary Source

} v 1

5‘T paN QI(O

I |
A A A \/Av/\//\\/n\)'o' -

When the observer is moving towards the source with velocity, v,
Here the observer receives more waves in one second than he is at rest.

S=vt [t=1/v
Additional waves = distance traveled in 1 sec/wavelength orS=vlv
orv=v/S=v/k
OF  Vagdiional = Vo/A or v=Av
= Vo /v (V) or A=vlv
And the frequency v' heard by the observer is
Vo= v v v(v) = v+ v V) 31D

As V' > v, therefore the pitch of the sound heard by the observer will increase.

Case 2: Observer is moving away from a stationary Source
If the observer is moving away from the stationary source, the sign of v, will be reversed, so
that

Vo= v-v () = vl = v /v) ~(3.12)
As V' < v, therefore the pitch of the sound heard by the observer will decrease.

Case 3: Source is moving towards a stationary Observer

o v —>
5!/\ 4 0

|

[ v;_ =1




If the source is at rest then
k= distance which v waves occupied /number of waves
Number of waves during one second is v and occupy a length v, so

A= vl [ v=2Av
If the source is moving towards the observer, v waves emitted in the length (v - vq), so
A= (v—vy) /v ....(3.13)

The changed frequency is given by
- V= VA = vV - vg)
or V' = v(v)/(v—vy) (314
As v' > v, therefore the pitch of the sound heard by the observer increases.

Case 4: Source is moving away from the stationary Observer
If the source is moving away from the observer , the sign of vy will be reversed with the
result that

Vo= v (v vg) (3015
As V' < v, therefore the pitch of the sound heard by the observer will decrease.

Case 5: Source & Observer both moving towards each other

s> <0
AAAAAAFF A
(V,—») (<)

When source is moving towards the observer, then from eq (3.13)

A= (v=v) /v
And when the observer is moving, total velocity is, v’
Vi = v o+ v,
therefore changed frequency, v’ is
Vo= VI = (v vg) My — V) ....(3.16)

Case 6: Source & Observer both moving away from each other

0—
N N
(ev;) (% —)

When source is moving away from the observer, changing the sign of v

ANo=(v+v)
and when the observer is moving away from the source, changing the sign of v,
Vi =v-vy,

therefore, changed frequency, v’ is
V=V = (v = o) (v + V) . (3.17)
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From eqgs (3.11) to (3.17) we can form the General Equation of Doppler effect,
Vi = v (vEivy /(v _+v5) Ll 38D

Case 0: When source & observer both are stationary

Here vo=0 & vy=0, then from eq (3.18), we get
vi=v s (3193

Applications:
1. Applied to light: The frequency of light from certain stars is found to be slightly more

and from other stars slightly less than the frequency of the same light emitted from the
source on earth. Their velocities can be obtained from this frequency difference.

o]

Ultrasonic waves from a bat: A bat determines the location and nature of objects by
sending ultrasonic waves.

Reflection of radar waves: The frequency of the reflected radar waves is decreased if the
plane is moving away and increased if it is approaching. From the observed frequency
difference the speed and direction of the plane can be calculated.

Ll

4. Detection of submarines: When under-water sound waves are reflected from a moving
submarine, we can detect its location.

5. Velocities of earth satellites: These velocities are determined from the Doppler shift in
the frequency of their transmitted waves.

Definition:

Doppler Shift: A displacement of lines in the spectra of certain celestial objects towards
longer wavelengths (i.e. towards the red end of the visible spectrum). The spectral lines
appear at slightly longer wavelengths than they would under normal conditions. Itis called
red shift. Some objects show a blue shift, indicating movement towards observer. These are
due to Doppler effect.
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